Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 1114: 309-24, 2014.
Article in English | MEDLINE | ID: mdl-24557912

ABSTRACT

Generation of a site-specific break at a genomic locus to stimulate homologous recombination (HR) is used in many organisms to efficiently target genes for various types of genetic modification. Additionally, a site-specific chromosomal break can be used to trigger HR at genomic regions distant from the break, thereby largely expanding the region available for introducing desired mutations. In contrast to the former approach, the latter presents an alternative way in which genes can be efficiently modified also when it is not possible or desirable to introduce a break in the vicinity of the targeting locus. This type of in vivo site-directed mutagenesis distant from a break can be accomplished in the yeast model organism Saccharomyces cerevisiae because the generation of a double-strand break (DSB) in yeast chromosomal DNA activates HR at long regions upstream and downstream from the break site. Here we provide a protocol for efficiently altering a yeast chromosomal locus following the induction of a DSB several kilobase pairs distant from the site of gene correction. The techniques described can be used in both diploid and haploid yeast strains, and we provide examples of the gene correction assays.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair , Diploidy , Gene Targeting/methods , Genetic Loci , Haploidy , Saccharomyces cerevisiae/genetics , Deoxyribonucleases, Type II Site-Specific/genetics , Deoxyribonucleases, Type II Site-Specific/metabolism , Mutagenesis, Site-Directed , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
2.
Methods Enzymol ; 533: 103-31, 2013.
Article in English | MEDLINE | ID: mdl-24182920

ABSTRACT

Gene manipulation serves the purpose of providing a better understanding of the function of specific genes as well as for developing novel variants of the genes of interest. The generation of knockout genes, the alteration, depletion, or enhancement of a particular gene function through the generation of specific gene mutations, or the generation of random mutations in a gene are all essential processes for gene manipulation. The genome of the yeast Saccharomyces cerevisiae is relatively easy to modify, owing to its efficient homologous recombination (HR) system. Gene knockout can be a very simple, one-step approach to eliminate a gene by substituting its DNA sequence with that of a genetic marker. Differently, desired mutations can be introduced into a gene by replacing the sequence of the normal gene with that of the mutated gene. Recombinant DNA can be created in vitro and then introduced into cells, most often exploiting the endogenous recombination system of the cells. However, unless the desired mutation gives a particular phenotype, a bottleneck of 'recombineering' is the requirement of a selection system to identify the recombinant clones among those unmodified. Even in an organism like yeast where the level of HR is highly above the incidence of random integration, the frequency of homologous targeting is in the range of 10(-4)-10(-6) depending on the length of the homology used (Wach et al., 1994). Thus, a selection system is always required to identify the targeted clones. Counterselectable markers, such as URA3, LYS2, LYS5, MET15, and TRP1 (Bach and LaCroute, 1972; Chattoo et al., 1979; Singh and Sherman, 1974; Toyn et al., 2000), are widely utilized in yeast and can be recycled for additional usage in the same yeast strain. If the marker is not eliminated or it is popped out via site-specific recombination between direct repeats, such as in the Flp/FRT or Cre/Lox systems, a heterologous sequence is left as a scar at the site of the modified DNA (Storici et al., 1999; Sauer, 1987). The presence of such scars can threaten the genomic stability of the strain and/or limit the number of successive genetic manipulations for that strain. Here, we describe the delitto perfetto approach for in vivo mutagenesis that combines the practicality of a general selection system with the versatility of synthetic oligonucleotides for targeting (Storici et al., 2001). It provides for generation of gene knockouts and almost any sort of mutation and genome rearrangement via HR. The delitto perfetto in vivo mutagenesis technique is designed for efficient and precise manipulation of yeast strains in a two-step process spanning ~2 weeks. Here, we present the theory and procedures of the delitto perfetto technique.


Subject(s)
Gene Knockout Techniques/methods , Mutagenesis, Site-Directed/methods , Saccharomyces cerevisiae/genetics , Electrophoresis, Agar Gel/methods , Gene Knockout Techniques/instrumentation , Genetic Loci , Mutagenesis, Site-Directed/instrumentation , Polymerase Chain Reaction/methods , Selection, Genetic
3.
Methods Mol Biol ; 745: 173-91, 2011.
Article in English | MEDLINE | ID: mdl-21660695

ABSTRACT

Delitto perfetto is a site-specific in vivo mutagenesis system that has been developed to generate changes at will in the genome of the yeast Saccharomyces cerevisiae. Using this technique, it is possible to rapidly and efficiently engineer yeast strains without requiring several intermediate steps as it functions in only two steps, both of which rely on homologous recombination to drive the changes to the target DNA region. The first step involves the insertion of a cassette containing two markers at or near the locus to be altered. The second step involves complete removal of this cassette with oligonucleotides and/or other genetic material and transfer of the expected genetic modification(s) to the chosen DNA locus. Here we provide a detailed protocol of the delitto perfetto approach and present examples of the most common and useful applications for in vivo mutagenesis to generate base substitutions, deletions, insertions, as well as for precise in vivo assembly and integration of multiple genetic elements, or gene collage.


Subject(s)
DNA Breaks, Double-Stranded , Mutagenesis, Site-Directed/methods , Saccharomyces cerevisiae/genetics , Genotype , Polymerase Chain Reaction
4.
Mutat Res ; 717(1-2): 91-8, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-21515292

ABSTRACT

As recently demonstrated in the yeast Saccharomyces cerevisiae model organism using synthetic RNA-containing oligonucleotides (oligos), RNA can serve as a template for DNA synthesis at the chromosomal level during the process of double-strand break (DSB) repair. Herein we show that the phenomenon of RNA-mediated DNA modification and repair is not limited to yeast cells. A tract of six ribonucleotides embedded in single-strand DNA oligos corresponding to either lagging or leading strand sequences could serve as a template to correct a defective lacZ marker gene in the chromosome of the bacterium Escherichia coli. In order to test the capacity of RNA to modify DNA in mammalian cells, we utilized DNA oligos containing an embedded tract of six ribonucleotides, as well as oligos mostly made of RNA. These oligos were designed to repair a chromosomal break generated within a copy of the green fluorescent protein (GFP) gene randomly integrated into the genome of human HEK-293 cells. We show that these RNA-containing oligos can serve as templates to repair a DSB in human cells and can introduce base changes into genomic or plasmid DNA. In both E. coli and human cells, the strand bias of chromosomal gene correction by the single-strand RNA-containing oligos was the same as that obtained for the corresponding DNA molecules. Therefore, the RNA-containing oligos are not converted into a cDNA before annealing with complementary DNA. Overall, we demonstrate that in both bacterial and human cells, as in yeast, RNA sequences can have a direct role in DNA genetic modification and remodeling.


Subject(s)
DNA/metabolism , Escherichia coli/cytology , Escherichia coli/genetics , RNA/metabolism , Base Sequence , Chromosomes/genetics , Chromosomes/metabolism , DNA/genetics , DNA Repair , HEK293 Cells , Humans , Oligonucleotides/chemistry , Oligonucleotides/genetics , Oligonucleotides/metabolism , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...