Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Nat Cell Biol ; 24(9): 1350-1363, 2022 09.
Article in English | MEDLINE | ID: mdl-36075976

ABSTRACT

Coordinated changes of cellular plasticity and identity are critical for pluripotent reprogramming and oncogenic transformation. However, the sequences of events that orchestrate these intermingled modifications have never been comparatively dissected. Here, we deconvolute the cellular trajectories of reprogramming (via Oct4/Sox2/Klf4/c-Myc) and transformation (via Ras/c-Myc) at the single-cell resolution and reveal how the two processes intersect before they bifurcate. This approach led us to identify the transcription factor Bcl11b as a broad-range regulator of cell fate changes, as well as a pertinent marker to capture early cellular intermediates that emerge simultaneously during reprogramming and transformation. Multiomics characterization of these intermediates unveiled a c-Myc/Atoh8/Sfrp1 regulatory axis that constrains reprogramming, transformation and transdifferentiation. Mechanistically, we found that Atoh8 restrains cellular plasticity, independent of cellular identity, by binding a specific enhancer network. This study provides insights into the partitioned control of cellular plasticity and identity for both regenerative and cancer biology.


Subject(s)
Cellular Reprogramming , Induced Pluripotent Stem Cells , Cell Plasticity/genetics , Cellular Reprogramming/genetics , Induced Pluripotent Stem Cells/metabolism , Octamer Transcription Factor-3/genetics , SOXB1 Transcription Factors/genetics , Transcription Factors/metabolism , Tumor Suppressor Proteins/metabolism
2.
Eur J Sport Sci ; 16(1): 115-27, 2016.
Article in English | MEDLINE | ID: mdl-25599128

ABSTRACT

In view of the changes in and growing variety of sports-related occupations, it is highly relevant for educational institutions to know how well the educational contents of their sport science courses meet the professional requirements. This study analyses the relationship between the competencies acquired through academic sports science courses and the requirements of the relevant jobs in Switzerland. The data for this empirical analysis were drawn from a sample of n = 1054 graduates of different academic sport science programmes at all eight Swiss universities. The results show that academic sport science courses primarily communicate sports-specific expertise and practical sports skills. On the other hand, most graduates consider that the acquisition of interdisciplinary competencies plays a comparatively minor role in sport science education, even though these competencies are felt to be an important requirement in a variety of work-related environments and challenges.


Subject(s)
Career Choice , Professional Competence , Sports , Humans , Occupations , Switzerland
3.
Phys Med ; 31(6): 607-14, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25934524

ABSTRACT

Epilepsy is one of the most important neurological diseases. It concerns about 1% of the population worldwide. Despite the discovery of new molecules, one third of epileptic patients are resistant to anti-epileptic drugs and among them only a few can benefit from resective surgery. In this context, radiotherapy is an interesting alternative to the other treatments and several clinical devices exist (e.g., Gamma Knife(®)). The European Synchrotron Radiation Facility offers the possibility to develop new methods of radiosurgery and to study their antiepileptic effects. Here, we discuss several studies that we performed recently to test and try to understand the antiepileptic effects of X-ray synchrotron microbeams in different animal models of epilepsy. We showed a decrease of seizures after Interlaced Microbeam Radiotherapy (IntMRT) of the somatosensory cortex, known as the seizure generator, in a genetic model of absence epilepsy. These antiepileptic effects were stable over 4 months and with low tissular and functional side-effects. The irradiated pyramidal neurons still displayed their physiological activity but did not synchronize anymore. We also obtained a lasting suppression of seizures after IntMRT of the dorsal hippocampus in a mouse model of mesiotemporal lobe epilepsy. However, an important variability of antiepileptic efficiency was observed probably due to the small size of the targeted structure. Despite these encouraging proofs-of-concepts, there is now a need to adapt IntMRT to other models of epilepsy in rodents which are close to refractory forms of epilepsy in human patients and to implement this approach to non-human primates, before moving to clinical trials.


Subject(s)
Biological Clocks , Dose Fractionation, Radiation , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Radiosurgery/instrumentation , Synchrotrons/instrumentation , Animals , Equipment Design , Feasibility Studies , Hippocampus/physiopathology , Hippocampus/radiation effects , Hippocampus/surgery , Humans , Mice , Mice, Inbred C57BL , Nerve Net/physiopathology , Nerve Net/surgery , Radiosurgery/methods , Radiotherapy, High-Energy/instrumentation , Radiotherapy, High-Energy/methods , Rats , Treatment Outcome
4.
Neuroscience ; 142(1): 125-37, 2006 Sep 29.
Article in English | MEDLINE | ID: mdl-16859834

ABSTRACT

Adenosine is a potent modulator of excitatory neurotransmission, especially in seizure-prone regions such as the hippocampal formation. In adult brain ambient levels of adenosine are controlled by adenosine kinase (ADK), the major adenosine-metabolizing enzyme, expressed most strongly in astrocytes. Since ontogeny of the adenosine system is largely unknown, we investigated ADK expression and cellular localization during postnatal development of the mouse brain, using immunofluorescence staining with cell-type specific markers. At early postnatal stages ADK immunoreactivity was prominent in neurons, notably in cerebral cortex and hippocampus. Thereafter, as seen best in hippocampus, ADK gradually disappeared from neurons and appeared in newly developed nestin- and glial fibrillary acidic protein (GFAP)-positive astrocytes. Furthermore, the region-specific downregulation of neuronal ADK coincided with the onset of myelination, as visualized by myelin basic protein staining. After postnatal day 14 (P14), the transition from neuronal to astrocytic ADK expression was complete, except in a subset of neurons that retained ADK until adulthood in specific regions, such as striatum. Moreover, neuronal progenitors in the adult dentate gyrus lacked ADK. Finally, recordings of excitatory field potentials in acute slice preparations revealed a reduced adenosinergic inhibition in P14 hippocampus compared with adult. These findings suggest distinct roles for adenosine in the developing and adult brain. First, ADK expression in young neurons may provide a salvage pathway to utilize adenosine in nucleic acid synthesis, thus supporting differentiation and plasticity and influencing myelination; and second, adult ADK expression in astrocytes may offer a mechanism to regulate adenosine levels as a function of metabolic needs and synaptic activity, thus contributing to the differential resistance of young and adult animals to seizures.


Subject(s)
Adenosine Kinase/metabolism , Astrocytes/enzymology , Brain , Gene Expression Regulation, Developmental/physiology , Neurons/enzymology , Age Factors , Animals , Animals, Newborn , Brain/cytology , Brain/enzymology , Brain/growth & development , Cell Count/methods , Excitatory Postsynaptic Potentials/physiology , Excitatory Postsynaptic Potentials/radiation effects , Glial Fibrillary Acidic Protein/metabolism , Immunohistochemistry/methods , In Vitro Techniques , Mice , Myelin Basic Protein/metabolism , Neurons/physiology , Patch-Clamp Techniques/methods , Phosphopyruvate Hydratase/metabolism
5.
SELECTION OF CITATIONS
SEARCH DETAIL
...