Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 65
Filter
Add more filters










Publication year range
1.
Neurobiol Dis ; 199: 106604, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39002810

ABSTRACT

Mitochondria are essential regulators of cellular energy metabolism and play a crucial role in the maintenance and function of neuronal cells. Studies in the last decade have highlighted the importance of mitochondrial dynamics and bioenergetics in adult neurogenesis, a process that significantly influences cognitive function and brain plasticity. In this review, we examine the mechanisms by which mitochondria regulate adult neurogenesis, focusing on the impact of mitochondrial function on the behavior of neural stem/progenitor cells and the maturation and plasticity of newborn neurons in the adult mouse hippocampus. In addition, we explore the link between mitochondrial dysfunction, adult hippocampal neurogenesis and genes associated with cognitive deficits in neurodevelopmental disorders. In particular, we provide insights into how alterations in the transcriptional regulator NR2F1 affect mitochondrial dynamics and may contribute to the pathophysiology of the emerging neurodevelopmental disorder Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS). Understanding how genes involved in embryonic and adult neurogenesis affect mitochondrial function in neurological diseases might open new directions for therapeutic interventions aimed at boosting mitochondrial function during postnatal life.

2.
Sci Adv ; 10(25): eadj0720, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38896627

ABSTRACT

Mutations in the transcription factors encoded by PHOX2B or LBX1 correlate with congenital central hypoventilation disorders. These conditions are typically characterized by pronounced hypoventilation, central apnea, and diminished chemoreflexes, particularly to abnormally high levels of arterial PCO2. The dysfunctional neurons causing these respiratory disorders are largely unknown. Here, we show that distinct, and previously undescribed, sets of medullary neurons coexpressing both transcription factors (dB2 neurons) account for specific respiratory functions and phenotypes seen in congenital hypoventilation. By combining intersectional chemogenetics, intersectional labeling, lineage tracing, and conditional mutagenesis, we uncovered subgroups of dB2 neurons with key functions in (i) respiratory tidal volumes, (ii) the hypercarbic reflex, (iii) neonatal respiratory stability, and (iv) neonatal survival. These data provide functional evidence for the critical role of distinct medullary dB2 neurons in neonatal respiratory physiology. In summary, our work identifies distinct subgroups of dB2 neurons regulating breathing homeostasis, dysfunction of which causes respiratory phenotypes associated with congenital hypoventilation.


Subject(s)
Homeodomain Proteins , Hypoventilation , Medulla Oblongata , Neurons , Transcription Factors , Hypoventilation/congenital , Hypoventilation/genetics , Animals , Neurons/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Transcription Factors/genetics , Transcription Factors/metabolism , Medulla Oblongata/metabolism , Sleep Apnea, Central/genetics , Phenotype , Humans
3.
Protein Sci ; 33(4): e4953, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38511490

ABSTRACT

Deciphering the structural effects of gene variants is essential for understanding the pathophysiological mechanisms of genetic diseases. Using a neurodevelopmental disorder called Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) as a genetic disease model, we applied structural bioinformatics and Genetic Code Expansion (GCE) strategies to assess the pathogenic impact of human NR2F1 variants and their binding with known and novel partners. While the computational analyses of the NR2F1 structure delineated the molecular basis of the impact of several variants on the isolated and complexed structures, the GCE enabled covalent and site-specific capture of transient supramolecular interactions in living cells. This revealed the variable quaternary conformations of NR2F1 variants and highlighted the disrupted interplay with dimeric partners and the newly identified co-factor, CRABP2. The disclosed consequence of the pathogenic mutations on the conformation, supramolecular interplay, and alterations in the cell cycle, viability, and sub-cellular localization of the different variants reflect the heterogeneous disease spectrum of BBSOAS and set up novel foundation for unveiling the complexity of neurodevelopmental diseases.


Subject(s)
Intellectual Disability , Humans , Mutation , Intellectual Disability/genetics , Genetic Code
4.
Neurobiol Dis ; 193: 106455, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38408685

ABSTRACT

White matter (WM) tract formation and axonal pathfinding are major processes in brain development allowing to establish precise connections between targeted structures. Disruptions in axon pathfinding and connectivity impairments will lead to neural circuitry abnormalities, often associated with various neurodevelopmental disorders (NDDs). Among several neuroimaging methodologies, Diffusion Tensor Imaging (DTI) is a magnetic resonance imaging (MRI) technique that has the advantage of visualizing in 3D the WM tractography of the whole brain non-invasively. DTI is particularly valuable in unpinning structural tract connectivity defects of neural networks in NDDs. In this study, we used 3D DTI to unveil brain-specific tract defects in two mouse models lacking the Nr2f1 gene, which mutations in patients have been proven to cause an emerging NDD, called Bosch-Boonstra-Schaaf Optic Atrophy (BBSOAS). We aimed to investigate the impact of the lack of cortical Nr2f1 function on WM morphometry and tract microstructure quantifications. We found in both mutant mice partial loss of fibers and severe misrouting of the two major cortical commissural tracts, the corpus callosum, and the anterior commissure, as well as the two major hippocampal efferent tracts, the post-commissural fornix, and the ventral hippocampal commissure. DTI tract malformations were supported by 2D histology, 3D fluorescent imaging, and behavioral analyses. We propose that these interhemispheric connectivity impairments are consistent in explaining some cognitive defects described in BBSOAS patients, particularly altered information processing between the two brain hemispheres. Finally, our results highlight 3DDTI as a relevant neuroimaging modality that can provide appropriate morphometric biomarkers for further diagnosis of BBSOAS patients.


Subject(s)
Optic Atrophy , White Matter , Humans , Mice , Animals , Diffusion Tensor Imaging , White Matter/diagnostic imaging , White Matter/pathology , Brain , Magnetic Resonance Imaging , Optic Atrophy/pathology
5.
PLoS Genet ; 19(9): e1010933, 2023 09.
Article in English | MEDLINE | ID: mdl-37738262

ABSTRACT

Autosomal recessive mutation of HOXB1 and Hoxb1 causes sensorineural hearing loss in patients and mice, respectively, characterized by the presence of higher auditory thresholds; however, the origin of the defects along the auditory pathway is still unknown. In this study, we assessed whether the abnormal auditory threshold and malformation of the sensory auditory cells, the outer hair cells, described in Hoxb1null mutants depend on the absence of efferent motor innervation, or alternatively, is due to altered sensory auditory components. By using a whole series of conditional mutant mice, which inactivate Hoxb1 in either rhombomere 4-derived sensory cochlear neurons or efferent motor neurons, we found that the hearing phenotype is mainly reproduced when efferent motor neurons are specifically affected. Our data strongly suggest that the interactions between olivocochlear motor neurons and outer hair cells during a critical postnatal period are crucial for both hair cell survival and the establishment of the cochlear amplification of sound.


Subject(s)
Hair Cells, Auditory, Outer , Hearing Loss, Sensorineural , Humans , Animals , Mice , Hearing Loss, Sensorineural/genetics , Hearing , Motor Neurons , Cell Survival
6.
PLoS Biol ; 21(8): e3002237, 2023 08.
Article in English | MEDLINE | ID: mdl-37552690

ABSTRACT

In vivo direct neuronal reprogramming relies on the implementation of an exogenous transcriptional program allowing to achieve conversion of a particular neuronal or glial cell type towards a new identity. The transcription factor (TF) Fezf2 is known for its role in neuronal subtype specification of deep-layer (DL) subcortical projection neurons. High ectopic Fezf2 expression in mice can convert both upper-layer (UL) and striatal projection neurons into a corticofugal fate, even if at low efficiency. In this study, we show that Fezf2 synergizes with the nuclear co-adaptor Lmo4 to further enhance reprogramming of UL cortical pyramidal neurons into DL corticofugal neurons, at both embryonic and early postnatal stages. Reprogrammed neurons express DL molecular markers and project toward subcerebral targets, including thalamus, cerebral peduncle (CP), and spinal cord (SC). We also show that co-expression of Fezf2 with the reprogramming factors Neurog2 and Bcl2 in early postnatal mouse glia promotes glia-to-neuron conversion with partial hallmarks of DL neurons and with Lmo4 promoting further morphological complexity. These data support a novel role for Lmo4 in synergizing with Fezf2 during direct lineage conversion in vivo.


Subject(s)
DNA-Binding Proteins , Neurons , Animals , Mice , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuroglia/metabolism , Neurons/physiology , Pyramidal Cells/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Dis Model Mech ; 16(6)2023 06 01.
Article in English | MEDLINE | ID: mdl-37260288

ABSTRACT

The nuclear receptor NR2F1 acts as a strong transcriptional regulator in embryonic and postnatal neural cells. In humans, mutations in the NR2F1 gene cause Bosch-Boonstra-Schaaf optic atrophy syndrome (BBSOAS), a rare neurodevelopmental disorder characterized by multiple clinical features including vision impairment, intellectual disability and autistic traits. In this study, we identified, by genome-wide and in silico analyses, a set of nuclear-encoded mitochondrial genes as potential genomic targets under direct NR2F1 transcriptional control in neurons. By combining mouse genetic, neuroanatomical and imaging approaches, we demonstrated that conditional NR2F1 loss of function within the adult mouse hippocampal neurogenic niche results in a reduced mitochondrial mass associated with mitochondrial fragmentation and downregulation of key mitochondrial proteins in newborn neurons, the genesis, survival and functional integration of which are impaired. Importantly, we also found dysregulation of several nuclear-encoded mitochondrial genes and downregulation of key mitochondrial proteins in the brain of Nr2f1-heterozygous mice, a validated BBSOAS model. Our data point to an active role for NR2F1 in the mitochondrial gene expression regulatory network in neurons and support the involvement of mitochondrial dysfunction in BBSOAS pathogenesis.


Subject(s)
COUP Transcription Factor I , Eye Abnormalities , Intellectual Disability , Optic Atrophy , Animals , Humans , Mice , Brain/metabolism , COUP Transcription Factor I/genetics , Eye Abnormalities/genetics , Eye Abnormalities/metabolism , Intellectual Disability/genetics , Mitochondria , Mutation/genetics , Optic Atrophy/genetics , Optic Atrophy/metabolism
9.
Cells ; 11(8)2022 04 08.
Article in English | MEDLINE | ID: mdl-35455940

ABSTRACT

The formation and maturation of the human brain is regulated by highly coordinated developmental events, such as neural cell proliferation, migration and differentiation. Any impairment of these interconnected multi-factorial processes can affect brain structure and function and lead to distinctive neurodevelopmental disorders. Here, we review the pathophysiology of the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS; OMIM 615722; ORPHA 401777), a recently described monogenic neurodevelopmental syndrome caused by the haploinsufficiency of NR2F1 gene, a key transcriptional regulator of brain development. Although intellectual disability, developmental delay and visual impairment are arguably the most common symptoms affecting BBSOAS patients, multiple additional features are often reported, including epilepsy, autistic traits and hypotonia. The presence of specific symptoms and their variable level of severity might depend on still poorly characterized genotype-phenotype correlations. We begin with an overview of the several mutations of NR2F1 identified to date, then further focuses on the main pathological features of BBSOAS patients, providing evidence-whenever possible-for the existing genotype-phenotype correlations. On the clinical side, we lay out an up-to-date list of clinical examinations and therapeutic interventions recommended for children with BBSOAS. On the experimental side, we describe state-of-the-art in vivo and in vitro studies aiming at deciphering the role of mouse Nr2f1, in physiological conditions and in pathological contexts, underlying the BBSOAS features. Furthermore, by modeling distinct NR2F1 genetic alterations in terms of dimer formation and nuclear receptor binding efficiencies, we attempt to estimate the total amounts of functional NR2F1 acting in developing brain cells in normal and pathological conditions. Finally, using the NR2F1 gene and BBSOAS as a paradigm of monogenic rare neurodevelopmental disorder, we aim to set the path for future explorations of causative links between impaired brain development and the appearance of symptoms in human neurological syndromes.


Subject(s)
Intellectual Disability , Optic Atrophies, Hereditary , Animals , COUP Transcription Factor I/metabolism , Genetic Association Studies , Humans , Intellectual Disability/genetics , Mice , Optic Atrophies, Hereditary/genetics , Optic Atrophies, Hereditary/pathology , Syndrome
10.
Development ; 149(5)2022 03 01.
Article in English | MEDLINE | ID: mdl-35262177

ABSTRACT

Axonal projections from layer V neurons of distinct neocortical areas are topographically organized into discrete clusters within the pontine nuclei during the establishment of voluntary movements. However, the molecular determinants controlling corticopontine connectivity are insufficiently understood. Here, we show that an intrinsic cortical genetic program driven by Nr2f1 graded expression is directly implicated in the organization of corticopontine topographic mapping. Transgenic mice lacking cortical expression of Nr2f1 and exhibiting areal organization defects were used as model systems to investigate the arrangement of corticopontine projections. By combining three-dimensional digital brain atlas tools, Cre-dependent mouse lines and axonal tracing, we show that Nr2f1 expression in postmitotic neurons spatially and temporally controls somatosensory topographic projections, whereas expression in progenitor cells influences the ratio between corticopontine and corticospinal fibres passing the pontine nuclei. We conclude that cortical gradients of area-patterning genes are directly implicated in the establishment of a topographic somatotopic mapping from the cortex onto pontine nuclei.


Subject(s)
Brain Mapping , Pons , Animals , Axons , Cerebral Cortex , Mice , Neural Pathways/physiology , Neurons , Pons/physiology
11.
Cell Rep ; 37(3): 109864, 2021 10 19.
Article in English | MEDLINE | ID: mdl-34686322

ABSTRACT

Increasing evidence suggests that neurodevelopmental alterations might contribute to increase the susceptibility to develop neurodegenerative diseases. We investigate the occurrence of developmental abnormalities in dopaminergic neurons in a model of Parkinson's disease (PD). We monitor the differentiation of human patient-specific neuroepithelial stem cells (NESCs) into dopaminergic neurons. Using high-throughput image analyses and single-cell RNA sequencing, we observe that the PD-associated LRRK2-G2019S mutation alters the initial phase of neuronal differentiation by accelerating cell-cycle exit with a concomitant increase in cell death. We identify the NESC-specific core regulatory circuit and a molecular mechanism underlying the observed phenotypes. The expression of NR2F1, a key transcription factor involved in neurogenesis, decreases in LRRK2-G2019S NESCs, neurons, and midbrain organoids compared to controls. We also observe accelerated dopaminergic differentiation in vivo in NR2F1-deficient mouse embryos. This suggests a pathogenic mechanism involving the LRRK2-G2019S mutation, where the dynamics of dopaminergic differentiation are modified via NR2F1.


Subject(s)
Brain/enzymology , COUP Transcription Factor I/metabolism , Dopaminergic Neurons/enzymology , Induced Pluripotent Stem Cells/enzymology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Neural Stem Cells/enzymology , Neurogenesis , Parkinson Disease/enzymology , Animals , Brain/pathology , COUP Transcription Factor I/genetics , Cell Cycle , Cell Line , Cell Proliferation , Cell Survival , Dopaminergic Neurons/pathology , Female , Humans , Induced Pluripotent Stem Cells/pathology , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Male , Mice, 129 Strain , Mice, Knockout , Mutation , Neural Stem Cells/pathology , Parkinson Disease/genetics , Parkinson Disease/pathology , Phenotype , RNA-Seq , Signal Transduction , Single-Cell Analysis , Time Factors
12.
Brain Commun ; 3(3): fcab162, 2021.
Article in English | MEDLINE | ID: mdl-34466801

ABSTRACT

Pathogenic NR2F1 variants cause a rare autosomal dominant neurodevelopmental disorder referred to as the Bosch-Boonstra-Schaaf Optic Atrophy Syndrome. Although visual loss is a prominent feature seen in affected individuals, the molecular and cellular mechanisms contributing to visual impairment are still poorly characterized. We conducted a deep phenotyping study on a cohort of 22 individuals carrying pathogenic NR2F1 variants to document the neurodevelopmental and ophthalmological manifestations, in particular the structural and functional changes within the retina and the optic nerve, which have not been detailed previously. The visual impairment became apparent in early childhood with small and/or tilted hypoplastic optic nerves observed in 10 cases. High-resolution optical coherence tomography imaging confirmed significant loss of retinal ganglion cells with thinning of the ganglion cell layer, consistent with electrophysiological evidence of retinal ganglion cells dysfunction. Interestingly, for those individuals with available longitudinal ophthalmological data, there was no significant deterioration in visual function during the period of follow-up. Diffusion tensor imaging tractography studies showed defective connections and disorganization of the extracortical visual pathways. To further investigate how pathogenic NR2F1 variants impact on retinal and optic nerve development, we took advantage of an Nr2f1 mutant mouse disease model. Abnormal retinogenesis in early stages of development was observed in Nr2f1 mutant mice with decreased retinal ganglion cell density and disruption of retinal ganglion cell axonal guidance from the neural retina into the optic stalk, accounting for the development of optic nerve hypoplasia. The mutant mice showed significantly reduced visual acuity based on electrophysiological parameters with marked conduction delay and decreased amplitude of the recordings in the superficial layers of the visual cortex. The clinical observations in our study cohort, supported by the mouse data, suggest an early neurodevelopmental origin for the retinal and optic nerve head defects caused by NR2F1 pathogenic variants, resulting in congenital vision loss that seems to be non-progressive. We propose NR2F1 as a major gene that orchestrates early retinal and optic nerve head development, playing a key role in the maturation of the visual system.

13.
Brain Struct Funct ; 226(4): 1303-1322, 2021 May.
Article in English | MEDLINE | ID: mdl-33661352

ABSTRACT

The neocortex, the most recently evolved brain region in mammals, is characterized by its unique areal and laminar organization. Distinct cortical layers and areas can be identified by the presence of graded expression of transcription factors and molecular determinants defining neuronal identity. However, little is known about the expression of key master genes orchestrating human cortical development. In this study, we explored the expression dynamics of NR2F1 and SOX2, key cortical genes whose mutations in human patients cause severe neurodevelopmental syndromes. We focused on physiological conditions, spanning from mid-late gestational ages to adulthood in unaffected specimens, but also investigated gene expression in a pathological context, a developmental cortical malformation termed focal cortical dysplasia (FCD). We found that NR2F1 follows an antero-dorsallow to postero-ventralhigh gradient as in the murine cortex, suggesting high evolutionary conservation. While SOX2 is mainly expressed in neural progenitors next to the ventricular surface, NR2F1 is found in both mitotic progenitors and post-mitotic neurons at GW18. Interestingly, both proteins are highly co-expressed in basal radial glia progenitors of the outer sub-ventricular zone (OSVZ), a proliferative region known to contribute to cortical expansion and complexity in humans. Later on, SOX2 becomes largely restricted to astrocytes and oligodendrocytes although it is also detected in scattered mature interneurons. Differently, NR2F1 maintains its distinct neuronal expression during the whole process of cortical development. Notably, we report here high levels of NR2F1 in dysmorphic neurons and NR2F1 and SOX2 in balloon cells of surgical samples from patients with FCD, suggesting their potential use in the histopathological characterization of this dysplasia.


Subject(s)
COUP Transcription Factor I/metabolism , SOXB1 Transcription Factors/metabolism , Adult , Animals , Humans , Interneurons/metabolism , Mice , Neocortex/metabolism , Neurogenesis , Neurons/metabolism , SOXB1 Transcription Factors/genetics
14.
Bio Protoc ; 11(1): e3868, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33732758

ABSTRACT

The mammalian neocortex, the outer layer of the cerebrum and most recently evolved brain region, is characterized by its unique areal and laminar organization. Distinct cortical layers and areas can be identified by the protein expression of graded transcription factors and molecular determinants that define the identity of different projection neurons. Thus, specific detection and visualization of protein expression is crucial for assessing the identity of neocortical neurons and, more broadly, for understanding early and late developmental mechanisms and function of this complex system. Several immunostaining/immunofluorescence methods exist to detect protein expression. Published protocols vary with regard to subtle details, which may impact the final outcome of the immunofluorescence. Here, we provide a detailed protocol, suitable for both thin cryostat sections and thick vibratome sections, which has successfully worked for a wide range of antibodies directed against key molecular players of neocortical development. Ranging from early technical steps of brains collection down to image analysis and statistics, we include every detail concerning sample inclusion and sectioning, slide storage and optimal antibody dilutions aimed at reducing non-specific background. Routinely used in the lab, our background-optimized immunostaining protocol allows efficient detection of area- and layer- specific molecular determinants of distinct neocortical projection neurons. Graphic abstract: Workflow chart for the optimized immunostaining protocol of mouse brain sections. A. A flow chart for different steps of the optimized immunostaining protocol on both thin cryostat and thick vibratome sections. B. Example for immunostaining against Satb2 and Ctip2 on a thin coronal section (20 µm) at the level of the somatosensory cortex. The first column to the left shows the binning system where 6 bins can be overlaid on the image. On the bottom, an example of counting analysis showing the percentage of marker-positive cells normalized to the total number of DAPI or Hoechst-positive cells. C. Example for immunostaining against Satb2 and Ctip2 on a GFP+ thick vibratome section (200 µm). Images are taken at low magnification (10x, left) and high magnification (40x, right). The graph shows a counting of the percentage of Ctip2-positive neurons normalized to the total number of GFP-electroporated neurons on high-magnification images. Images on B and C are modified from Harb et al. (2016).

15.
Front Mol Neurosci ; 14: 767965, 2021.
Article in English | MEDLINE | ID: mdl-34975398

ABSTRACT

The assembly and maturation of the mammalian brain result from an intricate cascade of highly coordinated developmental events, such as cell proliferation, migration, and differentiation. Any impairment of this delicate multi-factorial process can lead to complex neurodevelopmental diseases, sharing common pathogenic mechanisms and molecular pathways resulting in multiple clinical signs. A recently described monogenic neurodevelopmental syndrome named Bosch-Boonstra-Schaaf Optic Atrophy Syndrome (BBSOAS) is caused by NR2F1 haploinsufficiency. The NR2F1 gene, coding for a transcriptional regulator belonging to the steroid/thyroid hormone receptor superfamily, is known to play key roles in several brain developmental processes, from proliferation and differentiation of neural progenitors to migration and identity acquisition of neocortical neurons. In a clinical context, the disruption of these cellular processes could underlie the pathogenesis of several symptoms affecting BBSOAS patients, such as intellectual disability, visual impairment, epilepsy, and autistic traits. In this review, we will introduce NR2F1 protein structure, molecular functioning, and expression profile in the developing mouse brain. Then, we will focus on Nr2f1 several functions during cortical development, from neocortical area and cell-type specification to maturation of network activity, hippocampal development governing learning behaviors, assembly of the visual system, and finally establishment of cortico-spinal descending tracts regulating motor execution. Whenever possible, we will link experimental findings in animal or cellular models to corresponding features of the human pathology. Finally, we will highlight some of the unresolved questions on the diverse functions played by Nr2f1 during brain development, in order to propose future research directions. All in all, we believe that understanding BBSOAS mechanisms will contribute to further unveiling pathophysiological mechanisms shared by several neurodevelopmental disorders and eventually lead to effective treatments.

16.
Cereb Cortex ; 30(11): 5667-5685, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32572460

ABSTRACT

The formation of functional cortical maps in the cerebral cortex results from a timely regulated interaction between intrinsic genetic mechanisms and electrical activity. To understand how transcriptional regulation influences network activity and neuronal excitability within the neocortex, we used mice deficient for Nr2f1 (also known as COUP-TFI), a key determinant of primary somatosensory (S1) area specification during development. We found that the cortical loss of Nr2f1 impacts on spontaneous network activity and synchronization of S1 cortex at perinatal stages. In addition, we observed alterations in the intrinsic excitability and morphological features of layer V pyramidal neurons. Accordingly, we identified distinct voltage-gated ion channels regulated by Nr2f1 that might directly influence intrinsic bioelectrical properties during critical time windows of S1 cortex specification. Altogether, our data suggest a tight link between Nr2f1 and neuronal excitability in the developmental sequence that ultimately sculpts the emergence of cortical network activity within the immature neocortex.


Subject(s)
COUP Transcription Factor I/metabolism , Neurogenesis/physiology , Pyramidal Cells/metabolism , Somatosensory Cortex/embryology , Somatosensory Cortex/growth & development , Animals , Female , Gene Expression Regulation, Developmental/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Somatosensory Cortex/metabolism
17.
EMBO J ; 39(13): e104163, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32484994

ABSTRACT

The relationships between impaired cortical development and consequent malformations in neurodevelopmental disorders, as well as the genes implicated in these processes, are not fully elucidated to date. In this study, we report six novel cases of patients affected by BBSOAS (Boonstra-Bosch-Schaff optic atrophy syndrome), a newly emerging rare neurodevelopmental disorder, caused by loss-of-function mutations of the transcriptional regulator NR2F1. Young patients with NR2F1 haploinsufficiency display mild to moderate intellectual disability and show reproducible polymicrogyria-like brain malformations in the parietal and occipital cortex. Using a recently established BBSOAS mouse model, we found that Nr2f1 regionally controls long-term self-renewal of neural progenitor cells via modulation of cell cycle genes and key cortical development master genes, such as Pax6. In the human fetal cortex, distinct NR2F1 expression levels encompass gyri and sulci and correlate with local degrees of neurogenic activity. In addition, reduced NR2F1 levels in cerebral organoids affect neurogenesis and PAX6 expression. We propose NR2F1 as an area-specific regulator of mouse and human brain morphology and a novel causative gene of abnormal gyrification.


Subject(s)
COUP Transcription Factor I/metabolism , Neocortex/embryology , Neural Stem Cells/metabolism , Occipital Lobe/embryology , Optic Atrophies, Hereditary/embryology , Parietal Lobe/embryology , Animals , COUP Transcription Factor I/genetics , Disease Models, Animal , Humans , Mice , Neocortex/pathology , Neural Stem Cells/pathology , Occipital Lobe/pathology , Optic Atrophies, Hereditary/genetics , Optic Atrophies, Hereditary/pathology , PAX6 Transcription Factor/genetics , PAX6 Transcription Factor/metabolism , Parietal Lobe/pathology
18.
EMBO Mol Med ; 11(8): e10291, 2019 08.
Article in English | MEDLINE | ID: mdl-31318166

ABSTRACT

Optic nerve atrophy represents the most common form of hereditary optic neuropathies leading to vision impairment. The recently described Bosch-Boonstra-Schaaf optic atrophy (BBSOA) syndrome denotes an autosomal dominant genetic form of neuropathy caused by mutations or deletions in the NR2F1 gene. Herein, we describe a mouse model recapitulating key features of BBSOA patients-optic nerve atrophy, optic disc anomalies, and visual deficits-thus representing the only available mouse model for this syndrome. Notably, Nr2f1-deficient optic nerves develop an imbalance between oligodendrocytes and astrocytes leading to postnatal hypomyelination and astrogliosis. Adult heterozygous mice display a slower optic axonal conduction velocity from the retina to high-order visual centers together with associative visual learning deficits. Importantly, some of these clinical features, such the optic nerve hypomyelination, could be rescued by chemical drug treatment in early postnatal life. Overall, our data shed new insights into the cellular mechanisms of optic nerve atrophy in BBSOA patients and open a promising avenue for future therapeutic approaches.


Subject(s)
COUP Transcription Factor I/genetics , Haploinsufficiency , Nerve Fibers, Myelinated/ultrastructure , Optic Atrophy, Autosomal Dominant/genetics , Optic Nerve/ultrastructure , Animals , Astrocytes/metabolism , Astrocytes/ultrastructure , Behavior, Animal , COUP Transcription Factor I/deficiency , Disease Models, Animal , Genetic Predisposition to Disease , Heterozygote , Humans , Learning , Mice, Knockout , Miconazole/pharmacology , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Myelinated/metabolism , Neural Conduction , Oligodendroglia/metabolism , Oligodendroglia/ultrastructure , Optic Atrophy, Autosomal Dominant/drug therapy , Optic Atrophy, Autosomal Dominant/metabolism , Optic Atrophy, Autosomal Dominant/pathology , Optic Nerve/drug effects , Optic Nerve/metabolism , Visual Perception
19.
iScience ; 15: 257-273, 2019 May 31.
Article in English | MEDLINE | ID: mdl-31082736

ABSTRACT

Visual system development involves the formation of neuronal projections connecting the retina to the thalamic dorso-lateral geniculate nucleus (dLGN) and the thalamus to the visual cerebral cortex. Patients carrying mutations in the SOX2 transcription factor gene present severe visual defects, thought to be linked to SOX2 functions in the retina. We show that Sox2 is strongly expressed in mouse postmitotic thalamic projection neurons. Cre-mediated deletion of Sox2 in these neurons causes reduction of the dLGN, abnormal distribution of retino-thalamic and thalamo-cortical projections, and secondary defects in cortical patterning. Reduced expression, in mutants, of Sox2 target genes encoding ephrin-A5 and the serotonin transport molecules SERT and vMAT2 (important for establishment of thalamic connectivity) likely provides a molecular contribution to these defects. These findings unveil thalamic SOX2 function as a novel regulator of visual system development and a plausible additional cause of brain-linked genetic blindness in humans.

20.
Genes Brain Behav ; 18(7): e12556, 2019 09.
Article in English | MEDLINE | ID: mdl-30653836

ABSTRACT

The nuclear receptor COUP TFI (also known as Nr2f1) plays major roles in specifying distinct neuronal subtypes during patterning of the neocortical motor and somatosensory cortex, as well as in regulating the longitudinal growth of the hippocampus during development. In humans, mutations in the NR2F1 gene lead to a global developmental delay and intellectual disabilities. While more than 30% of patients show behavioral features of autism spectrum disorder, 16% of haploinsufficient children show signs of hyperactivity and impulsivity. Loss of COUP-TFI in the cortical mouse primordium results in altered area organization and serotonin distribution, abnormal coordination of voluntary movements and learning and memory deficits. Here, we asked whether absence of COUP-TFI affects locomotor activity, anxiety, as well as depression. Mice mutant for COUP-TFI have normal motor coordination, but significant traits of hyperactivity, which does not seem to respond to N-Methyl-D-aspartate (NMDA) antagonists. However, no changes in anxiety, despite increased locomotor performances, were observed in the open field task. On the contrary, elevated plus maze and dark-light test explorations indicate a decreased anxiety-like behavior in COUP-TFI mutant mice. Finally, significantly reduced immobility in the forced swim test and no changes in anhedonia in the sucrose preference task suggest no particular depressive behaviors in mutant mice. Taken together, our study shows that loss of COUP-TFI leads to increased locomotor activity but less anxiety and contributes in further deciphering the pathophysiology of patients haploinsufficient for NR2F1.


Subject(s)
Anxiety/genetics , COUP Transcription Factor I/genetics , Psychomotor Agitation/genetics , Somatosensory Cortex/metabolism , Animals , COUP Transcription Factor I/metabolism , Female , Gene Deletion , Male , Mice , Mice, Inbred C57BL , Somatosensory Cortex/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL