Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Transl Med ; 9(372)2017 01 11.
Article in English | MEDLINE | ID: mdl-28077676

ABSTRACT

Disease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non-small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient-derived xenografts (PDXs). To deliver a potent anticancer drug to PTK7-expressing TICs, we generated a targeted antibody-drug conjugate (ADC) composed of a humanized anti-PTK7 monoclonal antibody, a cleavable valine-citrulline-based linker, and Aur0101, an auristatin microtubule inhibitor. The PTK7-targeted ADC induced sustained tumor regressions and outperformed standard-of-care chemotherapy. Moreover, the ADC specifically reduced the frequency of TICs, as determined by serial transplantation experiments. In addition to reducing the TIC frequency, the PTK7-targeted ADC may have additional antitumor mechanisms of action, including the inhibition of angiogenesis and the stimulation of immune cells. Together, these preclinical data demonstrate the potential for the PTK7-targeted ADC to improve the long-term survival of cancer patients.


Subject(s)
Antibodies/therapeutic use , Cell Adhesion Molecules/chemistry , Immunoconjugates/therapeutic use , Neoplastic Stem Cells/drug effects , Receptor Protein-Tyrosine Kinases/chemistry , Aminobenzoates/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/therapy , Cell Adhesion Molecules/immunology , Cell Line, Tumor , Clinical Trials as Topic , Female , Humans , Immunotherapy/methods , Lung Neoplasms/immunology , Lung Neoplasms/therapy , Macaca fascicularis , Mice , Mice, Inbred NOD , Mice, SCID , Microtubules/chemistry , Neoplasm Recurrence, Local/drug therapy , Oligopeptides/therapeutic use , Ovarian Neoplasms/immunology , Ovarian Neoplasms/therapy , Receptor Protein-Tyrosine Kinases/immunology , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Xenograft Model Antitumor Assays
2.
Sci Transl Med ; 7(302): 302ra136, 2015 Aug 26.
Article in English | MEDLINE | ID: mdl-26311731

ABSTRACT

The high-grade pulmonary neuroendocrine tumors, small cell lung cancer (SCLC) and large cell neuroendocrine carcinoma (LCNEC), remain among the most deadly malignancies. Therapies that effectively target and kill tumor-initiating cells (TICs) in these cancers should translate to improved patient survival. Patient-derived xenograft (PDX) tumors serve as excellent models to study tumor biology and characterize TICs. Increased expression of delta-like 3 (DLL3) was discovered in SCLC and LCNEC PDX tumors and confirmed in primary SCLC and LCNEC tumors. DLL3 protein is expressed on the surface of tumor cells but not in normal adult tissues. A DLL3-targeted antibody-drug conjugate (ADC), SC16LD6.5, comprised of a humanized anti-DLL3 monoclonal antibody conjugated to a DNA-damaging pyrrolobenzodiazepine (PBD) dimer toxin, induced durable tumor regression in vivo across multiple PDX models. Serial transplantation experiments executed with limiting dilutions of cells provided functional evidence confirming that the lack of tumor recurrence after SC16LD6.5 exposure resulted from effective targeting of DLL3-expressing TICs. In vivo efficacy correlated with DLL3 expression, and responses were observed in PDX models initiated from patients with both limited and extensive-stage disease and were independent of their sensitivity to standard-of-care chemotherapy regimens. SC16LD6.5 effectively targets and eradicates DLL3-expressing TICs in SCLC and LCNEC PDX tumors and is a promising first-in-class ADC for the treatment of high-grade pulmonary neuroendocrine tumors.


Subject(s)
Antibodies, Monoclonal/immunology , Antineoplastic Agents/therapeutic use , Immunoconjugates/therapeutic use , Intracellular Signaling Peptides and Proteins/immunology , Lung Neoplasms/drug therapy , Membrane Proteins/immunology , Neuroendocrine Tumors/drug therapy , Animals , Female , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/metabolism , Membrane Proteins/metabolism , Mice , Mice, Inbred NOD , Mice, SCID , Neuroendocrine Tumors/metabolism , Xenograft Model Antitumor Assays
3.
Clin Cancer Res ; 21(18): 4165-73, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26015513

ABSTRACT

PURPOSE: Triple-negative breast cancer (TNBC) and ovarian cancer each comprise heterogeneous tumors, for which current therapies have little clinical benefit. Novel therapies that target and eradicate tumor-initiating cells (TIC) are needed to significantly improve survival. EXPERIMENTAL DESIGN: A panel of well-annotated patient-derived xenografts (PDX) was established, and surface markers that enriched for TIC in specific tumor subtypes were empirically determined. The TICs were queried for overexpressed antigens, one of which was selected to be the target of an antibody-drug conjugate (ADC). The efficacy of the ADC was evaluated in 15 PDX models to generate hypotheses for patient stratification. RESULTS: We herein identified E-cadherin (CD324) as a surface antigen able to reproducibly enrich for TIC in well-annotated, low-passage TNBC and ovarian cancer PDXs. Gene expression analysis of TIC led to the identification of Ephrin-A4 (EFNA4) as a prospective therapeutic target. An ADC comprising a humanized anti-EFNA4 monoclonal antibody conjugated to the DNA-damaging agent calicheamicin achieved sustained tumor regressions in both TNBC and ovarian cancer PDX in vivo. Non-claudin low TNBC tumors exhibited higher expression and more robust responses than other breast cancer subtypes, suggesting a specific translational application for tumor subclassification. CONCLUSIONS: These findings demonstrate the potential of PF-06647263 (anti-EFNA4-ADC) as a first-in-class compound designed to eradicate TIC. The use of well-annotated PDX for drug discovery enabled the identification of a novel TIC target, pharmacologic evaluation of the compound, and translational studies to inform clinical development.


Subject(s)
Aminoglycosides/chemistry , Antibodies, Monoclonal, Murine-Derived/chemistry , Enediynes/chemistry , Ephrin-A4/chemistry , Ovarian Neoplasms/drug therapy , Triple Negative Breast Neoplasms/drug therapy , Animals , Antibodies, Monoclonal, Humanized/chemistry , Antigens, Neoplasm/chemistry , Cell Line, Tumor , DNA/chemistry , Drug Design , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , HEK293 Cells , Humans , Mice , Mice, Inbred NOD , Mice, SCID , Neoplastic Stem Cells/metabolism , Prospective Studies , Random Allocation , Treatment Outcome , Xenograft Model Antitumor Assays
4.
PLoS One ; 8(1): e52442, 2013.
Article in English | MEDLINE | ID: mdl-23300973

ABSTRACT

MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.


Subject(s)
Gene Expression Regulation , Heart/physiology , MicroRNAs/metabolism , RNA, Messenger/metabolism , Transcriptome , Animals , Cell Line , Chromosome Mapping/methods , Dogs , Female , Heart Valves/metabolism , Humans , In Situ Hybridization , Macaca fascicularis , Male , Myocardium/pathology , RNA Processing, Post-Transcriptional , Rats , Rats, Wistar , Species Specificity
5.
PLoS One ; 6(9): e24058, 2011.
Article in English | MEDLINE | ID: mdl-21931641

ABSTRACT

In order to define the molecular mechanisms regulating the specification and differentiation of pancreatic ß-islet cells, we investigated the effect of upregulating Pdx1 and Ngn3 during the differentiation of the ß-islet-like cells from murine embryonic stem (ES) cell-derived activin induced-endoderm. Induced overexpression of Pdx1 resulted in a significant upregulation of insulin (Ins1 and Ins2), and other pancreas-related genes. To enhance the developmental progression from the pancreatic bud to the formation of the endocrine lineages, we induced the overexpression express of Ngn3 together with Pdx1. This combination dramatically increased the level and timing of maximal Ins1 mRNA expression to approximately 100% of that found in the ßTC6 insulinoma cell line. Insulin protein and C-peptide expression was confirmed by immunohistochemistry staining. These inductive effects were restricted to c-kit(+) endoderm enriched EB-derived populations suggesting that Pdx1/Ngn3 functions after the specification of pancreatic endoderm. Although insulin secretion was stimulated by various insulin secretagogues, these cells had only limited glucose response. Microarray analysis was used to evaluate the expression of a broad spectrum of pancreatic endocrine cell-related genes as well as genes associated with glucose responses. Taken together, these findings demonstrate the utility of manipulating Pdx1 and Ngn3 expression in a stage-specific manner as an important new strategy for the efficient generation of functionally immature insulin-producing ß-islet cells from ES cells.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Embryonic Stem Cells/metabolism , Endoderm/metabolism , Homeodomain Proteins/genetics , Islets of Langerhans/metabolism , Nerve Tissue Proteins/genetics , Trans-Activators/genetics , Activins/pharmacology , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone Morphogenetic Protein 4/pharmacology , C-Peptide/genetics , C-Peptide/metabolism , Cell Culture Techniques , Cell Differentiation/genetics , Cell Line , Cell Line, Tumor , Embryoid Bodies/cytology , Embryoid Bodies/drug effects , Embryoid Bodies/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/drug effects , Endoderm/cytology , Flow Cytometry , Gene Expression Profiling , Homeodomain Proteins/metabolism , Immunohistochemistry , Insulin/genetics , Insulin/metabolism , Islets of Langerhans/cytology , Mice , Nerve Tissue Proteins/metabolism , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Trans-Activators/metabolism
6.
Mol Pharm ; 6(3): 801-12, 2009.
Article in English | MEDLINE | ID: mdl-19265397

ABSTRACT

Matrix attachment therapy (MAT) is an enzyme prodrug strategy that targets hyaluronan in the tumor extracellular matrix to deliver a prodrug converting enzyme near the tumor cells. A recombinant fusion protein containing the hyaluronan binding domain of TSG-6 (Link) and yeast cytosine deaminase (CD) with an N-terminal His(x6) tag was constructed to test MAT on the C26 colon adenocarcinoma in Balb/c mice that were given 5-fluorocytosine (5-FC) in the drinking water. LinkCD was expressed in Escherichia coli and purified by metal-chelation affinity chromatography. The purified LinkCD fusion protein exhibits a K(m) of 0.33 mM and V(max) of 15 microM/min/microg for the conversion of 5-FC to 5-fluorouracil (5-FU). The duration of the enzyme activity for LinkCD was longer than that of CD enzyme at 37 degrees C: the fusion protein retained 20% of its initial enzyme activity after 24 h, and 12% after 48 h. The LinkCD fusion protein can bind to a hyaluronan oligomer (12-mer) at a K(D) of 55 microM at pH 7.4 and a K(D) of 5.32 microM at pH 6.0 measured using surface plasmon resonance (SPR). To evaluate the antitumor effect of LinkCD/5-FC combination therapy in vivo, mice received intratumoral injections of LinkCD on days 11 and 14 after C26 tumor implantation and the drinking water containing 10 mg/mL of 5-FC starting on day 11. To examine if the Link domain by itself was able to reduce tumor growth, we included treatment groups that received LinkCD without 5-FC and Link-mtCD (a functional mutant that lacks cytosine deaminase activity) with 5-FC. Animals that received LinkCD/5-FC treatment showed significant tumor size reduction and increased survival compared to the CD/5-FC treatment group. Treatment groups that were unable to produce 5-FU had no effect on the tumor growth despite receiving the fusion protein that contained the Link domain. The results indicate that a treatment regime consisting of a fusion protein containing the Link domain, the active CD enzyme, and the prodrug 5-FC is sufficient to produce an antitumor effect. Thus, the LinkCD fusion protein is an alternative to antibody-directed prodrug enzyme therapy (ADEPT) approaches for cancer treatment.


Subject(s)
Adenocarcinoma/drug therapy , Colonic Neoplasms/drug therapy , Cytosine Deaminase/metabolism , Flucytosine/metabolism , Flucytosine/therapeutic use , Hyaluronic Acid/metabolism , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/therapeutic use , Animals , Cytosine Deaminase/genetics , Female , Flucytosine/administration & dosage , Fluorouracil/metabolism , Hydrogen-Ion Concentration , Mice , Mice, Inbred BALB C , Protein Binding , Protein Structure, Tertiary , Recombinant Fusion Proteins/administration & dosage , Recombinant Fusion Proteins/chemistry , Surface Plasmon Resonance
7.
Nat Biotechnol ; 26(10): 1169-78, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18820686

ABSTRACT

To efficiently generate cardiomyocytes from embryonic stem (ES) cells in culture it is essential to identify key regulators of the cardiac lineage and to develop methods to control them. Using a tet-inducible mouse ES cell line to enforce expression of a constitutively activated form of the Notch 4 receptor, we show that signaling through the Notch pathway can efficiently respecify hemangioblasts to a cardiac fate, resulting in the generation of populations consisting of >60% cardiomyocytes. Microarray analyses reveal that this respecification is mediated in part through the coordinated regulation of the BMP and Wnt pathways by Notch signaling. Together, these findings have uncovered a potential role for the Notch pathway in cardiac development and provide an approach for generating large numbers of cardiac progenitors from ES cells.


Subject(s)
Cell Culture Techniques/methods , Hemangioblasts/cytology , Hemangioblasts/physiology , Myocytes, Cardiac/cytology , Myocytes, Cardiac/physiology , Proto-Oncogene Proteins/metabolism , Receptors, Notch/metabolism , Signal Transduction/physiology , Tissue Engineering/methods , Animals , Cell Differentiation , Cells, Cultured , Mice , Proto-Oncogene Proteins/genetics , Receptor, Notch4 , Receptors, Notch/genetics
8.
BMC Genomics ; 6: 55, 2005 Apr 18.
Article in English | MEDLINE | ID: mdl-15836779

ABSTRACT

BACKGROUND: Since the early stages of tumorigenesis involve adhesion, escape from immune surveillance, vascularization and angiogenesis, we devised a strategy to study the expression profiles of all publicly known and putative secreted and cell surface genes. We designed a custom oligonucleotide microarray containing probes for 3531 secreted and cell surface genes to study 5 diverse human transformed cell lines and their derivative xenograft tumors. The origins of these human cell lines were lung (A549), breast (MDA MB-231), colon (HCT-116), ovarian (SK-OV-3) and prostate (PC3) carcinomas. RESULTS: Three different analyses were performed: (1) A PCA-based linear discriminant analysis identified a 54 gene profile characteristic of all tumors, (2) Application of MANOVA (Pcorr < .05) to tumor data revealed a larger set of 149 differentially expressed genes. (3) After MANOVA was performed on data from individual tumors, a comparison of differential genes amongst all tumor types revealed 12 common differential genes. Seven of the 12 genes were identified by all three analytical methods. These included late angiogenic, morphogenic and extracellular matrix genes such as ANGPTL4, COL1A1, GP2, GPR57, LAMB3, PCDHB9 and PTGER3. The differential expression of ANGPTL4 and COL1A1 and other genes was confirmed by quantitative PCR. CONCLUSION: Overall, a comparison of the three analyses revealed an expression pattern indicative of late angiogenic processes. These results show that a xenograft model using multiple cell lines of diverse tissue origin can identify common tumorigenic cell surface or secreted molecules that may be important biomarker and therapeutic discoveries.


Subject(s)
Biomarkers, Tumor/genetics , Cell Membrane/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Membrane Proteins/chemistry , Neovascularization, Pathologic , Analysis of Variance , Animals , Cell Line, Transformed , Cell Line, Tumor , DNA, Complementary/metabolism , Female , Genetic Markers , Genetic Techniques , Genomics/methods , Humans , Male , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Multivariate Analysis , Neoplasm Transplantation , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Polymerase Chain Reaction , Principal Component Analysis , RNA/metabolism , Signal Transduction
9.
Immunol Lett ; 96(1): 129-45, 2005 Jan 15.
Article in English | MEDLINE | ID: mdl-15585316

ABSTRACT

Activation of T-cells by antigens initiates a complex series of signal-transduction events that are critical for immune responses. While kinases are key mediators of signal transduction networks, several of which have been well characterized in T-cell activation, the functional roles of other kinases remain poorly defined. To address this deficiency, we developed a genetic screen to survey the functional roles of kinases in antigen mediated T-cell activation. A retroviral library was constructed that expressed genetic suppressor elements (GSEs) comprised of peptides and antisense nucleotides derived from kinase cDNAs including members of the STE, CAMK, AGC, CMGC, RGC, TK, TKL, Atypical, and Lipid kinase groups. The retroviral library was expressed in Jurkat T-cells and analyzed for their effect on T-cell activation as monitored by CD69 expression. Jurkat cells were activated by antigen presenting cells treated with superantigen, and sorted for a CD69 negative phenotype by flow cytometry. We identified 19 protein kinases that were previously implicated in T-cell signaling processes and 12 kinases that were not previously linked to T-cell activation. To further validate our approach, we characterized the role of the protein kinase MAP4K4 that was identified in the screen. siRNA studies showed a role for MAP4K4 in antigen mediated T-cell responses in Jurkat and primary T-cells. In addition, by analyzing multiple promoter elements using reporter assays, we have shown that MAP4K4 is implicated in the activation of the TNF-alpha promoter. Our results suggest that this methodology could be used to survey the function of the entire kinome in T-cell activation.


Subject(s)
Lymphocyte Activation/immunology , Phosphotransferases/analysis , T-Lymphocytes/enzymology , Antigens, CD/immunology , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Genetic Vectors , Humans , Intracellular Signaling Peptides and Proteins , Jurkat Cells , Lectins, C-Type , Lymphocyte Activation/genetics , Peptide Library , Phosphotransferases/genetics , Phosphotransferases/metabolism , Protein Serine-Threonine Kinases/metabolism , Retroviridae , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
10.
Oncogene ; 23(49): 8158-70, 2004 Oct 21.
Article in English | MEDLINE | ID: mdl-15361835

ABSTRACT

Survival factors play critical roles in regulating cell growth in normal and cancer cells. We designed a genetic screen to identify survival factors which protect tumor cells from apoptosis. A retroviral expression library of random cDNA fragments was constructed from cancer cells and used to transduce the colon carcinoma cell line HCT116. Recipient cells were functionally selected for induction of caspase 3-mediated apoptosis. Analyses of over 10,000 putative genetic suppression elements (GSEs) sequences revealed cognate gene candidates that are implicated in apoptosis. We further analysed 26 genes encoding cell surface and secreted proteins that can potentially serve as targets for therapeutic antibodies. Tetracycline-inducible GSEs from several gene candidates induced apoptosis in stable HCT 116 cell lines. Similar phenotypes were caused by RNAi derived from the same genes. Our data suggest requirement for the cell surface targets IGF2R, L1CAM and SLC31A1 in tumor cell growth in vitro, and suggests that IGF2R is required for xenograft tumor growth in a mouse model.


Subject(s)
Apoptosis , Colonic Neoplasms/pathology , Receptor, IGF Type 2/physiology , Animals , Caspase 3 , Caspases/physiology , Cell Division , Cell Line, Tumor , Cell Survival , Humans , Mice , Neoplasm Transplantation , RNA, Small Interfering/pharmacology , Receptor, IGF Type 2/genetics , Transduction, Genetic , Transplantation, Heterologous
SELECTION OF CITATIONS
SEARCH DETAIL
...