Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Gut ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38839272

ABSTRACT

OBJECTIVE: There is a strong clinical association between IBD and primary sclerosing cholangitis (PSC), a chronic disease of the liver characterised by biliary inflammation that leads to strictures and fibrosis. Approximately 60%-80% of people with PSC will also develop IBD (PSC-IBD). One hypothesis explaining this association would be that PSC drives IBD. Therefore, our aim was to test this hypothesis and to decipher the underlying mechanism. DESIGN: Colitis severity was analysed in experimental mouse models of colitis and sclerosing cholangitis, and people with IBD and PSC-IBD. Foxp3+ Treg-cell infiltration was assessed by qPCR and flow cytometry. Microbiota profiling was carried out from faecal samples of people with IBD, PSC-IBD and mouse models recapitulating these diseases. Faecal microbiota samples collected from people with IBD and PSC-IBD were transplanted into germ-free mice followed by colitis induction. RESULTS: We show that sclerosing cholangitis attenuated IBD in mouse models. Mechanistically, sclerosing cholangitis causes an altered intestinal microbiota composition, which promotes Foxp3+ Treg-cell expansion, and thereby protects against IBD. Accordingly, sclerosing cholangitis promotes IBD in the absence of Foxp3+ Treg cells. Furthermore, people with PSC-IBD have an increased Foxp3+ expression in the colon and an overall milder IBD severity. Finally, by transplanting faecal microbiota into gnotobiotic mice, we showed that the intestinal microbiota of people with PSC protects against colitis. CONCLUSION: This study shows that PSC attenuates IBD and provides a comprehensive insight into the mechanisms involved in this effect.

2.
Front Immunol ; 15: 1307297, 2024.
Article in English | MEDLINE | ID: mdl-38510236

ABSTRACT

Background: Primary sclerosing cholangitis (PSC) is a chronic liver disease marked by inflammation of the bile ducts and results in the development of strictures and fibrosis. A robust clinical correlation exists between PSC and inflammatory bowel disease (IBD). At present, published data are controversial, and it is yet unclear whether IBD drives or attenuates PSC. Methods: Mdr2-deficient mice or DDC-fed mice were used as experimental models for sclerosing cholangitis. Additionally, colitis was induced in mice with experimental sclerosing cholangitis, either through infection with Citrobacter rodentium or by feeding with DSS. Lastly, fibrosis levels were determined through FibroScan analysis in people with PSC and PSC-IBD. Results: Using two distinct experimental models of colitis and two models of sclerosing cholangitis, we found that colitis does not aggravate liver pathology, but rather reduces liver inflammation and liver fibrosis. Likewise, people with PSC-IBD have decreased liver fibrosis compared to those with PSC alone. Conclusions: We found evidence that intestinal inflammation attenuates liver pathology. This study serves as a basis for further research on the pathogenesis of PSC and PSC-IBD, as well as the molecular mechanism responsible for the protective effect of IBD on PSC development. This study could lead to the discovery of novel therapeutic targets for PSC.


Subject(s)
Cholangitis, Sclerosing , Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Cholangitis, Sclerosing/drug therapy , Inflammatory Bowel Diseases/pathology , Inflammation , Liver Cirrhosis/pathology
3.
J Immunol ; 211(11): 1669-1679, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37850963

ABSTRACT

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.


Subject(s)
Glomerulonephritis , T-Lymphocytes, Regulatory , Humans , Mice , Animals , Interleukin-10/metabolism , Th17 Cells , Kidney/metabolism , Transcription Factors/metabolism , Th1 Cells
4.
Cells ; 10(11)2021 11 05.
Article in English | MEDLINE | ID: mdl-34831261

ABSTRACT

Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most potent Ca2+ mobilizing agent and its inhibition proved to inhibit T-cell activation. However, the impact of the NAADP signaling on CD4+ T-cell differentiation and plasticity and on the inflammation in tissues other than the central nervous system remains unclear. In this study, we used an antagonist of NAADP signaling, trans-Ned 19, to study the role of NAADP in CD4+ T-cell differentiation and effector function. Partial blockade of NAADP signaling in naïve CD4+ T cells in vitro promoted the differentiation of Th17 cells. Interestingly, trans-Ned 19 also promoted the production of IL-10, co-expression of LAG-3 and CD49b and increased the suppressive capacity of Th17 cells. Moreover, using an IL-17A fate mapping mouse model, we showed that NAADP inhibition promotes conversion of Th17 cells into regulatory T cells in vitro and in vivo. In line with the results, we found that inhibiting NAADP ameliorates disease in a mouse model of intestinal inflammation. Thus, these results reveal a novel function of NAADP in controlling the differentiation and plasticity of CD4+ T cells.


Subject(s)
Calcium Signaling , Carbolines/pharmacology , Cell Plasticity , NADP/analogs & derivatives , Piperazines/pharmacology , Th17 Cells/cytology , Th17 Cells/immunology , Animals , CD3 Complex/metabolism , Calcium/metabolism , Calcium Signaling/drug effects , Cell Differentiation/drug effects , Cell Plasticity/drug effects , Cell Proliferation/drug effects , Disease Models, Animal , Forkhead Transcription Factors/metabolism , Inflammation/pathology , Interleukin-10/metabolism , Intestines/pathology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Mice, Inbred C57BL , Mice, Transgenic , NADP/antagonists & inhibitors , NADP/metabolism , Receptors, Antigen, T-Cell/metabolism , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Th1 Cells/drug effects , Th1 Cells/immunology , Th17 Cells/drug effects , Up-Regulation/drug effects
5.
Nat Commun ; 11(1): 5520, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139725

ABSTRACT

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Subject(s)
Adenine Nucleotides/metabolism , Asthenozoospermia/genetics , Cytoskeletal Proteins/deficiency , Situs Inversus/genetics , Adolescent , Adult , Animals , Asthenozoospermia/pathology , Axoneme/ultrastructure , CRISPR-Cas Systems/genetics , Cilia/metabolism , Cilia/ultrastructure , Cytoskeletal Proteins/genetics , DNA Mutational Analysis , Disease Models, Animal , Epididymis/pathology , Female , Flagella/metabolism , Flagella/ultrastructure , Humans , Loss of Function Mutation , Male , Mice , Mice, Knockout , Middle Aged , Planarians/cytology , Planarians/genetics , Planarians/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/pathology , Situs Inversus/diagnostic imaging , Situs Inversus/pathology , Sperm Motility/genetics , Tomography, X-Ray Computed , Exome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...