Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 574, 2022 09 17.
Article in English | MEDLINE | ID: mdl-36115866

ABSTRACT

Here we present a geographically diverse, temporally consistent, and nationally relevant land cover (LC) reference dataset collected by visual interpretation of very high spatial resolution imagery, in a national-scale crowdsourcing campaign (targeting seven generic LC classes) and a series of expert workshops (targeting seventeen detailed LC classes) in Indonesia. The interpreters were citizen scientists (crowd/non-experts) and local LC visual interpretation experts from different regions in the country. We provide the raw LC reference dataset, as well as a quality-filtered dataset, along with the quality assessment indicators. We envisage that the dataset will be relevant for: (1) the LC mapping community (researchers and practitioners), i.e., as reference data for training machine learning algorithms and map accuracy assessment (with appropriate quality-filters applied), and (2) the citizen science community, i.e., as a sizable empirical dataset to investigate the potential and limitations of contributions from the crowd/non-experts, demonstrated for LC mapping in Indonesia for the first time to our knowledge, within the context of complementing traditional data collection by expert interpreters.

2.
PLoS One ; 17(5): e0267114, 2022.
Article in English | MEDLINE | ID: mdl-35587481

ABSTRACT

Involving members of the public in image classification tasks that can be tricky to automate is increasingly recognized as a way to complete large amounts of these tasks and promote citizen involvement in science. While this labor is usually provided for free, it is still limited, making it important for researchers to use volunteer contributions as efficiently as possible. Using volunteer labor efficiently becomes complicated when individual tasks are assigned to multiple volunteers to increase confidence that the correct classification has been reached. In this paper, we develop a system to decide when enough information has been accumulated to confidently declare an image to be classified and remove it from circulation. We use a Bayesian approach to estimate the posterior distribution of the mean rating in a binary image classification task. Tasks are removed from circulation when user-defined certainty thresholds are reached. We demonstrate this process using a set of over 4.5 million unique classifications by 2783 volunteers of over 190,000 images assessed for the presence/absence of cropland. If the system outlined here had been implemented in the original data collection campaign, it would have eliminated the need for 59.4% of volunteer ratings. Had this effort been applied to new tasks, it would have allowed an estimated 2.46 times as many images to have been classified with the same amount of labor, demonstrating the power of this method to make more efficient use of limited volunteer contributions. To simplify implementation of this method by other investigators, we provide cutoff value combinations for one set of confidence levels.


Subject(s)
Volunteers , Bayes Theorem , Data Collection , Geography , Humans
3.
Glob Chang Biol ; 25(1): 174-186, 2019 01.
Article in English | MEDLINE | ID: mdl-30549201

ABSTRACT

There is an increasing evidence that smallholder farms contribute substantially to food production globally, yet spatially explicit data on agricultural field sizes are currently lacking. Automated field size delineation using remote sensing or the estimation of average farm size at subnational level using census data are two approaches that have been used. However, both have limitations, for example, automatic field size delineation using remote sensing has not yet been implemented at a global scale while the spatial resolution is very coarse when using census data. This paper demonstrates a unique approach to quantifying and mapping agricultural field size globally using crowdsourcing. A campaign was run in June 2017, where participants were asked to visually interpret very high resolution satellite imagery from Google Maps and Bing using the Geo-Wiki application. During the campaign, participants collected field size data for 130 K unique locations around the globe. Using this sample, we have produced the most accurate global field size map to date and estimated the percentage of different field sizes, ranging from very small to very large, in agricultural areas at global, continental, and national levels. The results show that smallholder farms occupy up to 40% of agricultural areas globally, which means that, potentially, there are many more smallholder farms in comparison with the two different current global estimates of 12% and 24%. The global field size map and the crowdsourced data set are openly available and can be used for integrated assessment modeling, comparative studies of agricultural dynamics across different contexts, for training and validation of remote sensing field size delineation, and potential contributions to the Sustainable Development Goal of Ending hunger, achieve food security and improved nutrition and promote sustainable agriculture.


Subject(s)
Crowdsourcing/statistics & numerical data , Farms , Satellite Imagery , Agriculture
4.
Sci Data ; 4: 170075, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28608851

ABSTRACT

Global land cover is an essential climate variable and a key biophysical driver for earth system models. While remote sensing technology, particularly satellites, have played a key role in providing land cover datasets, large discrepancies have been noted among the available products. Global land use is typically more difficult to map and in many cases cannot be remotely sensed. In-situ or ground-based data and high resolution imagery are thus an important requirement for producing accurate land cover and land use datasets and this is precisely what is lacking. Here we describe the global land cover and land use reference data derived from the Geo-Wiki crowdsourcing platform via four campaigns. These global datasets provide information on human impact, land cover disagreement, wilderness and land cover and land use. Hence, they are relevant for the scientific community that requires reference data for global satellite-derived products, as well as those interested in monitoring global terrestrial ecosystems in general.

SELECTION OF CITATIONS
SEARCH DETAIL
...