Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
Add more filters










Publication year range
1.
New Phytol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38666346

ABSTRACT

Barley (Hordeum vulgare) is an important global cereal crop and a model in genetic studies. Despite advances in characterising barley genomic resources, few mutant studies have identified genes controlling root architecture and anatomy, which plays a critical role in capturing soil resources. Our phenotypic screening of a TILLING mutant collection identified line TM5992 exhibiting a short-root phenotype compared with wild-type (WT) Morex background. Outcrossing TM5992 with barley variety Proctor and subsequent SNP array-based bulk segregant analysis, fine mapped the mutation to a cM scale. Exome sequencing pinpointed a mutation in the candidate gene HvPIN1a, further confirming this by analysing independent mutant alleles. Detailed analysis of root growth and anatomy in Hvpin1a mutant alleles exhibited a slower growth rate, shorter apical meristem and striking vascular patterning defects compared to WT. Expression and mutant analyses of PIN1 members in the closely related cereal brachypodium (Brachypodium distachyon) revealed that BdPIN1a and BdPIN1b were redundantly expressed in root vascular tissues but only Bdpin1a mutant allele displayed root vascular defects similar to Hvpin1a. We conclude that barley PIN1 genes have sub-functionalised in cereals, compared to Arabidopsis (Arabidopsis thaliana), where PIN1a sequences control root vascular patterning.

2.
Nat Commun ; 14(1): 4665, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37537157

ABSTRACT

Oxygen is a key signalling component of plant biology, and whilst an oxygen-sensing mechanism was previously described in Arabidopsis thaliana, key features of the associated PLANT CYSTEINE OXIDASE (PCO) N-degron pathway and Group VII ETHYLENE RESPONSE FACTOR (ERFVII) transcription factor substrates remain untested or unknown. We demonstrate that ERFVIIs show non-autonomous activation of root hypoxia tolerance and are essential for root development and survival under oxygen limiting conditions in soil. We determine the combined effects of ERFVIIs in controlling gene expression and define genetic and environmental components required for proteasome-dependent oxygen-regulated stability of ERFVIIs through the PCO N-degron pathway. Using a plant extract, unexpected amino-terminal cysteine sulphonic acid oxidation level of ERFVIIs was observed, suggesting a requirement for additional enzymatic activity within the pathway. Our results provide a holistic understanding of the properties, functions and readouts of this oxygen-sensing mechanism defined through its role in modulating ERFVII stability.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Oxygen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Plants/metabolism , Gene Expression Regulation, Plant
3.
Mar Pollut Bull ; 194(Pt A): 115350, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37562274

ABSTRACT

As a non-invasive imaging technique, this study explores the application of Computed Tomography (CT) in microplastics research, assessing its potential to distinguish different types and sizes of microplastics (polypropylene, polyethylene terephthalate, polyethylene, and polyvinyl chloride) from homogenised river-estuarine sediment. When examined in layers within artificial cores, all microplastic types could be observed by CT imagery, with good contrast in X-ray attenuation (based on image gray level intensity) against background sediments. Large microplastics (4 mm diameter) were also detectable when distributed randomly amongst the sediment. These spiked cores had sufficient difference in attenuation to allow segmentation between type, and therefore isolate individual microplastics. Due to limitations on scan resolution, smaller microplastics (≤125 µm diameter) could not be detected in spiked cores. Scans of two sediment cores from a Thames River tributary (UK) revealed two distinctive sediment structures which could influence microplastic accumulation. This information would be lost using conventional recovery procedures.


Subject(s)
Microplastics , Water Pollutants, Chemical , Plastics/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Geologic Sediments/chemistry , Tomography, X-Ray Computed
4.
Science ; 378(6621): 762-768, 2022 11 18.
Article in English | MEDLINE | ID: mdl-36395221

ABSTRACT

Plant roots exhibit plasticity in their branching patterns to forage efficiently for heterogeneously distributed resources, such as soil water. The xerobranching response represses lateral root formation when roots lose contact with water. Here, we show that xerobranching is regulated by radial movement of the phloem-derived hormone abscisic acid, which disrupts intercellular communication between inner and outer cell layers through plasmodesmata. Closure of these intercellular pores disrupts the inward movement of the hormone signal auxin, blocking lateral root branching. Once root tips regain contact with moisture, the abscisic acid response rapidly attenuates. Our study reveals how roots adapt their branching pattern to heterogeneous soil water conditions by linking changes in hydraulic flux with dynamic hormone redistribution.


Subject(s)
Abscisic Acid , Indoleacetic Acids , Phloem , Plant Growth Regulators , Plant Roots , Water , Abscisic Acid/metabolism , Plant Roots/growth & development , Soil , Water/metabolism , Phloem/metabolism , Plasmodesmata/metabolism , Indoleacetic Acids/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism
5.
Anat Histol Embryol ; 51(6): 683-695, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36073246

ABSTRACT

This systematic review highlights the similarities and variations in Ossa cordis prevalence, histology and anatomical location between differing veterinary species and in humans. In addition, it also identifies associated factors such as aging and cardiovascular disease for each species in relation to functional roles and developmental mechanisms that these bone structures may play. The potential functions of Ossa cordis are presented, ranging from aiding cardiac contraction and conduction, providing cardiac structure, and protecting components of the heart, through to counteracting high mechanical stress. Furthermore, this review discusses the evidence and rationale behind the theories regarding the formation and development of Ossa cordis in different veterinary species and in people.


Subject(s)
Cardiovascular Diseases , Heart , Humans , Animals , Bone and Bones , Cardiovascular Diseases/veterinary
6.
Proc Natl Acad Sci U S A ; 119(30): e2201072119, 2022 07 26.
Article in English | MEDLINE | ID: mdl-35858424

ABSTRACT

Soil compaction represents a major agronomic challenge, inhibiting root elongation and impacting crop yields. Roots use ethylene to sense soil compaction as the restricted air space causes this gaseous signal to accumulate around root tips. Ethylene inhibits root elongation and promotes radial expansion in compacted soil, but its mechanistic basis remains unclear. Here, we report that ethylene promotes abscisic acid (ABA) biosynthesis and cortical cell radial expansion. Rice mutants of ABA biosynthetic genes had attenuated cortical cell radial expansion in compacted soil, leading to better penetration. Soil compaction-induced ethylene also up-regulates the auxin biosynthesis gene OsYUC8. Mutants lacking OsYUC8 are better able to penetrate compacted soil. The auxin influx transporter OsAUX1 is also required to mobilize auxin from the root tip to the elongation zone during a root compaction response. Moreover, osaux1 mutants penetrate compacted soil better than the wild-type roots and do not exhibit cortical cell radial expansion. We conclude that ethylene uses auxin and ABA as downstream signals to modify rice root cell elongation and radial expansion, causing root tips to swell and reducing their ability to penetrate compacted soil.


Subject(s)
Abscisic Acid , Ethylenes , Indoleacetic Acids , Oryza , Plant Roots , Abscisic Acid/metabolism , Ethylenes/metabolism , Indoleacetic Acids/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Mutation , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Soil
7.
Proc Natl Acad Sci U S A ; 119(31): e2201350119, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35881796

ABSTRACT

Root angle in crops represents a key trait for efficient capture of soil resources. Root angle is determined by competing gravitropic versus antigravitropic offset (AGO) mechanisms. Here we report a root angle regulatory gene termed ENHANCED GRAVITROPISM1 (EGT1) that encodes a putative AGO component, whose loss-of-function enhances root gravitropism. Mutations in barley and wheat EGT1 genes confer a striking root phenotype, where every root class adopts a steeper growth angle. EGT1 encodes an F-box and Tubby domain-containing protein that is highly conserved across plant species. Haplotype analysis found that natural allelic variation at the barley EGT1 locus impacts root angle. Gravitropic assays indicated that Hvegt1 roots bend more rapidly than wild-type. Transcript profiling revealed Hvegt1 roots deregulate reactive oxygen species (ROS) homeostasis and cell wall-loosening enzymes and cofactors. ROS imaging shows that Hvegt1 root basal meristem and elongation zone tissues have reduced levels. Atomic force microscopy measurements detected elongating Hvegt1 root cortical cell walls are significantly less stiff than wild-type. In situ analysis identified HvEGT1 is expressed in elongating cortical and stele tissues, which are distinct from known root gravitropic perception and response tissues in the columella and epidermis, respectively. We propose that EGT1 controls root angle by regulating cell wall stiffness in elongating root cortical tissue, counteracting the gravitropic machinery's known ability to bend the root via its outermost tissues. We conclude that root angle is controlled by EGT1 in cereal crops employing an antigravitropic mechanism.


Subject(s)
Crops, Agricultural , Gravitropism , Hordeum , Plant Proteins , Plant Roots , Cell Wall/chemistry , Crops, Agricultural/chemistry , Crops, Agricultural/genetics , Crops, Agricultural/growth & development , Gravitropism/genetics , Hordeum/chemistry , Hordeum/genetics , Hordeum/growth & development , Microscopy, Atomic Force , Plant Proteins/genetics , Plant Proteins/physiology , Plant Roots/chemistry , Plant Roots/genetics , Plant Roots/growth & development , Reactive Oxygen Species/metabolism , Transcription, Genetic
8.
Plant Direct ; 5(4): e00314, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33855257

ABSTRACT

Leaf function is influenced by leaf structure, which is itself related not only to the spatial arrangement of constituent mesophyll cells, but also their size and shape. In this study, we used confocal microscopy to image leaves of Triticum genotypes varying in ploidy level to extract 3D information on individual mesophyll cell size and geometry. Combined with X-ray Computed Tomography and gas exchange analysis, the effect of changes in wheat mesophyll cell geometry upon leaf structure and function were investigated. Mesophyll cell size and shape were found to have changed during the course of wheat evolution. An unexpected linear relationship between mesophyll cell surface area and volume was discovered, suggesting anisotropic scaling of mesophyll cell geometry with increasing ploidy. Altered mesophyll cell size and shape were demonstrated to be associated with changes in mesophyll tissue architecture. Under experimental growth conditions, CO2 assimilation did not vary with ploidy, but stomatal conductance was lower in hexaploid plants, conferring a greater instantaneous water-use efficiency. We propose that as wheat mesophyll cells have become larger with increased ploidy, this has been accompanied by changes in cell geometry and packing which limit water loss while maintaining carbon assimilation.

9.
Plant Methods ; 17(1): 26, 2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33750418

ABSTRACT

BACKGROUND: Wheat spike architecture is a key determinant of multiple grain yield components and detailed examination of spike morphometric traits is beneficial to explain wheat grain yield and the effects of differing agronomy and genetics. However, quantification of spike morphometric traits has been very limited because it relies on time-consuming manual measurements. RESULTS: In this study, using X-ray Computed Tomography imaging, we proposed a method to efficiently detect the 3D architecture of wheat spikes and component spikelets by clustering grains based on their Euclidean distance and relative positions. Morphometric characteristics of wheat spikelets and grains, e.g., number, size and spatial distribution along the spike can be determined. Two commercial wheat cultivars, one old, Maris Widgeon, and one modern, Siskin, were studied as examples. The average grain volume of Maris Widgeon and Siskin did not differ, but Siskin had more grains per spike and therefore greater total grain volume per spike. The spike length and spikelet number were not statistically different between the two cultivars. However, Siskin had a higher spikelet density (number of spikelets per unit spike length), with more grains and greater grain volume per spikelet than Maris Widgeon. Spatial distribution analysis revealed the number of grains, the average grain volume and the total grain volume of individual spikelets varied along the spike. Siskin had more grains and greater grain volumes per spikelet from spikelet 6, but not spikelet 1-5, compared with Maris Widgeon. The distribution of average grain volume along the spike was similar for the two wheat cultivars. CONCLUSION: The proposed method can efficiently extract spike, spikelet and grain morphometric traits of different wheat cultivars, which can contribute to a more detailed understanding of the sink of wheat grain yield.

10.
Food Chem ; 354: 129579, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-33773479

ABSTRACT

Sugar plays an important role in both the flavour and structure of confectionery. Targets have been set to reduce sugar; however, common strategies often result in changes in flavour and consumer rejection. In this study, an approach was developed to reduce sugar in confectionery gels by aeration, without significantly affecting perceived chewiness. Gelatine based gels with a 23% and 38% reduction in density were formulated using aeration. Mean bubble size was consistent across all gels (0.05-0.06 mm). Time-intensity sensory evaluation was carried out by a trained sensory panel (n = 10). With aeration, no significant difference in overall flavour perception was observed in the 23% and 38% reduced sugar and aroma gels. Air inclusions create a greater surface area, therefore accelerating mass transfer of volatiles and release of sucrose at the food-saliva interface. Consequently, we propose that less calorie dense products can be produced without compromising flavour by using gel aeration technologies.


Subject(s)
Air , Candy/analysis , Odorants/analysis , Sugars/analysis , Taste , Gels , Humans
11.
Science ; 371(6526): 276-280, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33446554

ABSTRACT

Soil compaction represents a major challenge for modern agriculture. Compaction is intuitively thought to reduce root growth by limiting the ability of roots to penetrate harder soils. We report that root growth in compacted soil is instead actively suppressed by the volatile hormone ethylene. We found that mutant Arabidopsis and rice roots that were insensitive to ethylene penetrated compacted soil more effectively than did wild-type roots. Our results indicate that soil compaction lowers gas diffusion through a reduction in air-filled pores, thereby causing ethylene to accumulate in root tissues and trigger hormone responses that restrict growth. We propose that ethylene acts as an early warning signal for roots to avoid compacted soils, which would be relevant to research into the breeding of crops resilient to soil compaction.


Subject(s)
Arabidopsis/growth & development , Ethylenes/metabolism , Plant Growth Regulators/metabolism , Plant Roots/growth & development , Soil , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Plant Roots/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
12.
Food Chem X ; 9: 100115, 2021 Mar 30.
Article in English | MEDLINE | ID: mdl-33511340

ABSTRACT

Salt is included in many foods which consumers do not regard as salty. This "hidden-salt" may offer functional benefits but is often overlooked in sodium reduction strategies. This study investigated its role in shortbread-like sweet biscuits (1.05 g NaCl/100 g). Sensory tests revealed significant flavour and texture differences after a salt reduction of 33% (0.86 g/ 100 g). This was explained by differences in the partitioning of hydrophobic aroma compounds into the headspace and a significant impact on structure. Texture analysis and X-ray-µCT measurements revealed a reduced hardness with larger and more air cells in salt-reduced biscuits. It is suggested that salt impacts on cereal proteins by altering their aggregation around flour particles and at bubble walls and that slower water loss occurs in salted matrices during baking. Hence, this study revealed the key properties significantly affected by salt reduction and proposes an explanation which will help to develop a targeted "hidden-salt" reduction strategy.

13.
Bio Protoc ; 11(24): e4252, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35087914

ABSTRACT

Roots are the prime organ for nutrient and water uptake and are therefore fundamental to the growth and development of plants. However, physical challenges of a heterogeneous environment and diverse edaphic stresses affect root growth in soil. Compacted soil is a serious global problem, causing inhibition of root elongation, which reduces surface area and impacts resource foraging. Visualisation and quantification of roots in soil is difficult due to this growth substrate's opaque nature; however, non-destructive imaging technologies are now becoming more widely available to plant and soil scientists working to address this challenge. We have recently developed an integrated approach, combining X-ray Computed Tomography (X-ray CT) and confocal microscopy to image roots grown in compacted soil conditions from a plant to a cellular scale. The method is suited to visualize cellular responses of root tips grown in both non-compacted and compacted soils. This protocol presents a fully integrated workflow, including soil column preparation, creation of compaction conditions, plant growth, imaging, and quantification of root adaptive responses at a cellular scale.

14.
J Exp Bot ; 72(2): 747-756, 2021 02 02.
Article in English | MEDLINE | ID: mdl-33064808

ABSTRACT

Wheat (Triticum aestivum L.) root growth in the subsoil is usually constrained by soil strength, although roots can use macropores to elongate to deeper layers. The quantitative relationship between the elongation of wheat roots and the soil pore system, however, is still to be determined. We studied the depth distribution of roots of six wheat varieties and explored their relationship with soil macroporosity from samples with the field structure preserved. Undisturbed soil cores (to a depth of 100 cm) were collected from the field and then non-destructively imaged using X-ray computed tomography (at a spatial resolution of 90 µm) to quantify soil macropore structure and root number density (the number of roots cm-2 within a horizontal cross-section of a soil core). Soil macroporosity changed significantly with depth but not between the different wheat lines. There was no significant difference in root number density between wheat varieties. In the subsoil, wheat roots used macropores, especially biopores (i.e. former root or earthworm channels) to grow into deeper layers. Soil macroporosity explained 59% of the variance in root number density. Our data suggested that the development of the wheat root system in the field was more affected by the soil macropore system than by genotype. On this basis, management practices which enhance the porosity of the subsoil may therefore be an effective strategy to improve deep rooting of wheat.


Subject(s)
Soil , Triticum , Genotype , Plant Roots , Porosity
15.
Sci Rep ; 10(1): 9417, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32523027

ABSTRACT

Cardiovascular diseases, especially idiopathic myocardial fibrosis, is one of the most significant causes of morbidity and mortality in captive great apes. This study compared the structure and morphology of 16 hearts from chimpanzees (Pan troglodytes) which were either healthy or affected by myocardial fibrosis using X-ray microtomography. In four hearts, a single, hyperdense structure was detected within the right fibrous trigone of the cardiac skeleton. High resolution scans and histopathology revealed trabecular bones in two cases, hyaline cartilage in another case and a focus of mineralised fibro-cartilaginous metaplasia with endochondral ossification in the last case. Four other animals presented with multiple foci of ectopic calcification within the walls of the great vessels. All hearts affected by marked myocardial fibrosis presented with bone or cartilage formation, and increased collagen levels in tissues adjacent to the bone/cartilage, while unaffected hearts did not present with os cordis or cartilago cordis. The presence of an os cordis has been described in some ruminants, camelids, and otters, but never in great apes. This novel research indicates that an os cordis and cartilago cordis is present in some chimpanzees, particularly those affected by myocardial fibrosis, and could influence the risk of cardiac arrhythmias and sudden death.


Subject(s)
Ape Diseases/pathology , Bone and Bones/pathology , Heart/physiopathology , Myocardium/pathology , Pan troglodytes/physiology , Animals , Ape Diseases/metabolism , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , Bone and Bones/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Cartilage/metabolism , Cartilage/pathology , Collagen/metabolism , Female , Fibrosis/metabolism , Fibrosis/pathology , Male , Myocardium/metabolism , Pan troglodytes/metabolism
16.
Article in English | MEDLINE | ID: mdl-32406835

ABSTRACT

We address the complex problem of reliably segmenting root structure from soil in X-ray Computed Tomography (CT) images. We utilise a deep learning approach, and propose a state-of-the-art multi-resolution architecture based on encoderdecoders. While previous work in encoder-decoders implies the use of multiple resolutions simply by downsampling and upsampling images, we make this process explicit, with branches of the network tasked separately with obtaining local high-resolution segmentation, and wider low-resolution contextual information. The complete network is a memory efficient implementation that is still able to resolve small root detail in large volumetric images. We compare against a number of different encoder-decoder based architectures from the literature, as well as a popular existing image analysis tool designed for root CT segmentation. We show qualitatively and quantitatively that a multi-resolution approach offers substantial accuracy improvements over a both a small receptive field size in a deep network, or a larger receptive field in a shallower network. We then further improve performance using an incremental learning approach, in which failures in the original network are used to generate harder negative training examples. Our proposed method requires no user interaction, is fully automatic, and identifies large and fine root material throughout the whole volume.

17.
PLoS One ; 15(5): e0232875, 2020.
Article in English | MEDLINE | ID: mdl-32407357

ABSTRACT

Water uptake into seeds is a fundamental prerequisite of germination and commonly influenced by commercial seed enhancement technologies. The effect of fruit orientation and contrasting pelleting materials on germination and biological performance of sugar beet was assessed. The results indicated there was orientation dependent fruit shrinkage of 37% for the operculum side supplied by moisture compared to 4% for the basal pore side. The expansion rate of 5% compared to the original size, which was also observed for non-shrinking seeds, indicated this was a temporary effect. This behaviour has importance for the application pelleting materials to seeds. Pellets composed of materials exhibiting low levels of swelling act as a water distribution layer which increased germination rates. Careful selection of pelleting material is crucial as it has direct implications on germination speed and subsequent establishment rates.


Subject(s)
Agriculture/methods , Beta vulgaris/physiology , Fruit/chemistry , Germination , Seeds/physiology , Sugars/metabolism , Water/metabolism , Beta vulgaris/chemistry , Beta vulgaris/growth & development , Fruit/physiology , Orientation, Spatial , Seeds/chemistry , Seeds/growth & development
18.
Plants (Basel) ; 9(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403352

ABSTRACT

The hormones strigolactones accumulate in plant roots under phosphorus (P) shortage, inducing variations in plant phenotype. In this study, we aimed at understanding whether strigolactones control morphological and anatomical changes in tomato (Solanum lycopersicum L.) roots under varying P supply. Root traits were evaluated in wild-type seedlings grown in high vs low P, with or without exogenous strigolactones, and in wild-type and strigolactone-depleted plants grown first under high vs no P, and then under high vs no P after acclimation on low P. Exogenous strigolactones stimulated primary root and lateral root number under low P. Root growth was reduced in strigolactone-depleted plants maintained under continuous P deprivation. Total root and root hair length, lateral root number and root tip anatomy were impaired by low strigolactone biosynthesis in plants grown under low P or transferred from low to no P. Under adequate P conditions, root traits of strigolactone-depleted and wild-type plants were similar. Concluding, our results indicate that strigolactones i) control macro- and microscopic changes of root in tomato depending on P supply; and ii) do not affect root traits significantly when plants are supplemented with adequate P, but are needed for acclimation to no P and typical responses to low P.

19.
Pest Manag Sci ; 76(8): 2653-2662, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32112498

ABSTRACT

BACKGROUND: Wireworms (larvae of the click beetle, Elateridae) are a significant agricultural pest, causing crop damage and reducing yields globally. Owing to the complex nature and opacity of the soil environment, research to investigate wireworm behaviour in situ has been scarce. X-ray computed tomography (CT) has previously been demonstrated as a powerful tool to independently visualise the 3D root system architecture, macroinvertebrate movement and distribution of burrow systems in soil, but not simultaneously within the same sample. In this study, we apply X-ray CT to visualise and quantify wireworms, their burrow systems and the root architecture of two contrasting crop species (Hordeum vulgare and Zea mays) in a soil pot experiment scanned at different time intervals. RESULTS: The majority of wireworm burrows were produced within the first 20 h post inoculation, suggesting that burrow systems are established quickly and persist at a similar volume. There was a significant difference in the volume of burrow systems produced by wireworms between the two crop species suggesting differences in wireworm behaviour elicited by crop species. There was no significant correlation between burrow volume and either root volume or surface area, indicating this behavioural difference is caused by factor(s) other than the mass of root systems. CONCLUSION: X-ray CT shows potential as a non-destructive technique to quantify the interaction of wireworms in the natural soil environment with crop roots, and aid the development of effective pest management strategies to minimise their negative impact on crop production. © 2020 Society of Chemical Industry.


Subject(s)
Soil , Agriculture , Animals , Coleoptera , Larva , Tomography, X-Ray Computed
20.
New Phytol ; 226(6): 1809-1821, 2020 06.
Article in English | MEDLINE | ID: mdl-32048296

ABSTRACT

Root system architecture (RSA) influences the effectiveness of resources acquisition from soils but the genetic networks that control RSA remain largely unclear. We used rhizoboxes, X-ray computed tomography, grafting, auxin transport measurements and hormone quantification to demonstrate that Arabidopsis and Medicago CEP (C-TERMINALLY ENCODED PEPTIDE)-CEP RECEPTOR signalling controls RSA, the gravitropic set-point angle (GSA) of lateral roots (LRs), auxin levels and auxin transport. We showed that soil-grown Arabidopsis and Medicago CEP receptor mutants have a narrower RSA, which results from a steeper LR GSA. Grafting showed that CEPR1 in the shoot controls GSA. CEP receptor mutants exhibited an increase in rootward auxin transport and elevated shoot auxin levels. Consistently, the application of auxin to wild-type shoots induced a steeper GSA and auxin transport inhibitors counteracted the CEP receptor mutant's steep GSA phenotype. Concordantly, CEP peptides increased GSA and inhibited rootward auxin transport in wild-type but not in CEP receptor mutants. The results indicated that CEP-CEP receptor-dependent signalling outputs in Arabidopsis and Medicago control overall RSA, LR GSA, shoot auxin levels and rootward auxin transport. We propose that manipulating CEP signalling strength or CEP receptor downstream targets may provide means to alter RSA.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids , Medicago/genetics , Medicago/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Receptors, Peptide/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...