Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 14: 1249555, 2023.
Article in English | MEDLINE | ID: mdl-37929175

ABSTRACT

Sweet sorghum is an attractive feedstock for the production of renewable chemicals and fuels due to the readily available fermentable sugars that can be extracted from the juice, and the additional stream of fermentable sugars that can be obtained from the cell wall polysaccharides in the bagasse. An important selection criterion for new sweet sorghum germplasm is resistance to anthracnose, a disease caused by the fungal pathogen Colletotrichum sublineolum. The identification of novel anthracnose-resistance sources present in sweet sorghum germplasm offers a fast track towards the development of new resistant sweet sorghum germplasm. We established a sweet sorghum diversity panel (SWDP) of 272 accessions from the USDA-ARS National Plant Germplasm (NPGS) collection that includes landraces from 22 countries and advanced breeding material, and that represents ~15% of the NPGS sweet sorghum collection. Genomic characterization of the SWDP identified 171,954 single nucleotide polymorphisms (SNPs) with an average of one SNP per 4,071 kb. Population structure analysis revealed that the SWDP could be stratified into four populations and one admixed group, and that this population structure could be aligned to sorghum's racial classification. Results from a two-year replicated trial of the SWDP for anthracnose resistance response in Texas, Georgia, Florida, and Puerto Rico showed 27 accessions to be resistant across locations, while 145 accessions showed variable resistance response against local pathotypes. A genome-wide association study identified 16 novel genomic regions associated with anthracnose resistance. Four resistance loci on chromosomes 3, 6, 8 and 9 were identified against pathotypes from Puerto Rico, and two resistance loci on chromosomes 3 and 8 against pathotypes from Texas. In Georgia and Florida, three resistance loci were detected on chromosomes 4, 5, 6 and four on chromosomes 4, 5 (two loci) and 7, respectively. One resistance locus on chromosome 2 was effective against pathotypes from Texas and Puerto Rico and a genomic region of 41.6 kb at the tip of chromosome 8 was associated with resistance response observed in Georgia, Texas, and Puerto Rico. This publicly available SWDP and the extensive evaluation of anthracnose resistance represent a valuable genomic resource for the improvement of sorghum.

2.
Curr Opin Plant Biol ; 66: 102165, 2022 04.
Article in English | MEDLINE | ID: mdl-35026487

ABSTRACT

Ubiquinone (coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. Studies have shown that plants derive approximately a quarter of 4-hydroxybenzoate, which serves as the direct ring precursor of ubiquinone, from the catabolism of kaempferol. Biochemical and genetic evidence suggests that the release of 4-hydroxybenzoate from kaempferol is catalyzed by heme-dependent peroxidases and that 3-O-glycosylations of kaempferol act as a negative regulator of this process. These findings not only represent an atypical instance of primary metabolite being derived from specialized metabolism but also raise the question as to whether ubiquinone contributes to the ROS scavenging and signaling functions already established for flavonols.


Subject(s)
Kaempferols , Ubiquinone , Kaempferols/metabolism , Plants/metabolism , Ubiquinone/genetics , Ubiquinone/metabolism
3.
Sci Rep ; 11(1): 20525, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654899

ABSTRACT

Anthracnose caused by the fungal pathogen C. sublineola is an economically important constraint on worldwide sorghum production. The most effective strategy to safeguard yield is through the introgression of resistance alleles. This requires elucidation of the genetic basis of the different resistance sources that have been identified. In this study, 223 recombinant inbred lines (RILs) derived from crossing anthracnose-differentials QL3 (96 RILs) and IS18760 (127 RILs) with the common susceptible parent PI609251 were evaluated at four field locations in the United States (Florida, Georgia, Texas, and Puerto Rico) for their anthracnose resistance response. Both RIL populations were highly susceptible to anthracnose in Florida and Georgia, while in Puerto Rico and Texas they were segregating for anthracnose resistance response. A genome scan using a composite linkage map of 982 single nucleotide polymorphisms (SNPs) detected two genomic regions of 4.31 and 0.85 Mb on chromosomes 4 and 8, respectively, that explained 10-27% of the phenotypic variation in Texas and Puerto Rico. In parallel, a subset of 43 RILs that contained 67% of the recombination events were evaluated against anthracnose pathotypes from Arkansas (2), Puerto Rico (2) and Texas (4) in the greenhouse. A genome scan showed that the 7.57 Mb region at the distal end of the short arm of chromosome 5 is associated with the resistance response against the pathotype AMP-048 from Arkansas. Comparative analysis identified the genomic region on chromosome 4 overlaps with an anthracnose resistance locus identified in another anthracnose-differential line, SC414-12E, indicating this genomic region is of interest for introgression in susceptible sorghum germplasm. Candidate gene analysis for the resistance locus on chromosome 5 identified an R-gene cluster that has high similarity to another R-gene cluster associated with anthracnose resistance on chromosome 9.


Subject(s)
Colletotrichum/physiology , Disease Resistance/genetics , Host-Pathogen Interactions/genetics , Quantitative Trait Loci , Sorghum/genetics , Plant Diseases , Sorghum/immunology , Sorghum/microbiology , Species Specificity
4.
J Biol Chem ; 297(5): 101283, 2021 11.
Article in English | MEDLINE | ID: mdl-34626646

ABSTRACT

Ubiquinone (Coenzyme Q) is a vital respiratory cofactor and liposoluble antioxidant. In plants, it is not known how the C-6 hydroxylation of demethoxyubiquinone, the penultimate step in ubiquinone biosynthesis, is catalyzed. The combination of cross-species gene network modeling along with mining of embryo-defective mutant databases of Arabidopsis thaliana identified the embryo lethal locus EMB2421 (At1g24340) as a top candidate for the missing plant demethoxyubiquinone hydroxylase. In marked contrast with prototypical eukaryotic demethoxyubiquinone hydroxylases, the catalytic mechanism of which depends on a carboxylate-bridged di-iron domain, At1g24340 is homologous to FAD-dependent oxidoreductases that instead use NAD(P)H as an electron donor. Complementation assays in Saccharomyces cerevisiae and Escherichia coli demonstrated that At1g24340 encodes a functional demethoxyubiquinone hydroxylase and that the enzyme displays strict specificity for the C-6 position of the benzoquinone ring. Laser-scanning confocal microscopy also showed that GFP-tagged At1g24340 is targeted to mitochondria. Silencing of At1g24340 resulted in 40 to 74% decrease in ubiquinone content and de novo ubiquinone biosynthesis. Consistent with the role of At1g24340 as a benzenoid ring modification enzyme, this metabolic blockage could not be bypassed by supplementation with 4-hydroxybenzoate, the immediate precursor of ubiquinone's ring. Unlike in yeast, in Arabidopsis overexpression of demethoxyubiquinone hydroxylase did not boost ubiquinone content. Phylogenetic reconstructions indicated that plant demethoxyubiquinone hydroxylase is most closely related to prokaryotic monooxygenases that act on halogenated aromatics and likely descends from an event of horizontal gene transfer between a green alga and a bacterium.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Mitochondria , Mixed Function Oxygenases , Phylogeny , Ubiquinone , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Mitochondria/enzymology , Mitochondria/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Ubiquinone/genetics , Ubiquinone/metabolism
5.
Phytopathology ; 110(12): 1863-1876, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33100146

ABSTRACT

Sorghum (Sorghum bicolor) is the fifth most cultivated cereal crop in the world, traditionally providing food, feed, and fodder, but more recently also fermentable sugars for the production of renewable fuels and chemicals. The hemibiotrophic fungal pathogen Colletotrichum sublineola, the causal agent of anthracnose disease in sorghum, is prevalent in the warm and humid climates where much of the sorghum is cultivated and poses a serious threat to sorghum production. The use of anthracnose-resistant sorghum germplasm is the most environmentally and economically sustainable way to protect sorghum against this pathogen. Even though multiple anthracnose resistance loci have been mapped in diverse sorghum germplasm in recent years, the diversity in C. sublineola pathotypes at the local and regional levels means that these resistance genes are not equally effective in different areas of cultivation. This review summarizes the genetic and cytological data underlying sorghum's defense response and describes recent developments that will enable a better understanding of the interactions between sorghum and C. sublineola at the molecular level. This includes releases of the sorghum genome and the draft genome of C. sublineola, the use of next-generation sequencing technologies to identify gene expression networks activated in response to infection, and improvements in methodologies to validate resistance genes, notably virus-induced and transgenic gene silencing approaches.


Subject(s)
Colletotrichum , Sorghum , Edible Grain , Plant Diseases , Sorghum/genetics
6.
G3 (Bethesda) ; 10(4): 1403-1412, 2020 04 09.
Article in English | MEDLINE | ID: mdl-32102832

ABSTRACT

Sorghum production is expanding to warmer and more humid regions where its production is being limited by multiple fungal pathogens. Anthracnose, caused by Colletotrichum sublineolum, is one of the major diseases in these regions, where it can cause yield losses of both grain and biomass. In this study, 114 recombinant inbred lines (RILs) derived from resistant sorghum line SC112-14 were evaluated at four distinct geographic locations in the United States for response to anthracnose. A genome scan using a high-density linkage map of 3,838 single nucleotide polymorphisms (SNPs) detected two loci at 5.25 and 1.18 Mb on chromosomes 5 and 6, respectively, that explain up to 59% and 44% of the observed phenotypic variation. A bin-mapping approach using a subset of 31 highly informative RILs was employed to determine the disease response to inoculation with ten anthracnose pathotypes in the greenhouse. A genome scan showed that the 5.25 Mb region on chromosome 5 is associated with a resistance response to nine pathotypes. Five SNP markers were developed and used to fine map the locus on chromosome 5 by evaluating 1,500 segregating F2:3 progenies. Based on the genotypic and phenotypic analyses of 11 recombinants, the locus was narrowed down to a 470-kb genomic region. Following a genome-wide association study based on 574 accessions previously phenotyped and genotyped, the resistance locus was delimited to a 34-kb genomic interval with five candidate genes. All five candidate genes encode proteins associated with plant immune systems, suggesting they may act in synergy in the resistance response.


Subject(s)
Colletotrichum , Sorghum , Disease Resistance/genetics , Dissection , Genome-Wide Association Study , Genomics , Genotype , Plant Diseases/genetics , Polymorphism, Single Nucleotide , Sorghum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...