Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 55(21): 9240-54, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-22974325

ABSTRACT

The cognitive impairments observed in Alzheimer's disease (AD) are in part a consequence of reduced acetylcholine (ACh) levels resulting from a loss of cholinergic neurons. Preclinically, serotonin 4 receptor (5-HT(4)) agonists are reported to modulate cholinergic function and therefore may provide a new mechanistic approach for treating cognitive deficits associated with AD. Herein we communicate the design and synthesis of potent, selective, and brain penetrant 5-HT(4) agonists. The overall goal of the medicinal chemistry strategy was identification of structurally diverse clinical candidates with varying intrinsic activities. The exposure-response relationships between binding affinity, intrinsic activity, receptor occupancy, drug exposure, and pharmacodynamic activity in relevant preclinical models of AD were utilized as key selection criteria for advancing compounds. On the basis of their excellent balance of pharmacokinetic attributes and safety, two lead 5-HT(4) partial agonist candidates 2d and 3 were chosen for clinical development.


Subject(s)
Alzheimer Disease/drug therapy , Cognition Disorders/drug therapy , Indoles/chemical synthesis , Piperidines/chemical synthesis , Pyrans/chemical synthesis , Serotonin 5-HT4 Receptor Agonists/chemical synthesis , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Alzheimer Disease/psychology , Animals , CHO Cells , Cricetinae , Cricetulus , Cyclic AMP/biosynthesis , Dogs , Drug Partial Agonism , HEK293 Cells , Haplorhini , Humans , In Vitro Techniques , Indoles/pharmacokinetics , Indoles/pharmacology , Madin Darby Canine Kidney Cells , Male , Microsomes, Liver/metabolism , Permeability , Piperidines/pharmacokinetics , Piperidines/pharmacology , Protein Isoforms/metabolism , Pyrans/pharmacokinetics , Pyrans/pharmacology , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT4/metabolism , Serotonin 5-HT4 Receptor Agonists/pharmacokinetics , Serotonin 5-HT4 Receptor Agonists/pharmacology , Stereoisomerism , Structure-Activity Relationship
2.
J Pharmacol Exp Ther ; 341(3): 681-91, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22408061

ABSTRACT

5-Hydroxytryptamine (5-HT)(4) receptor agonists reportedly stimulate brain acetylcholine (ACh) release, a property that might provide a new pharmacological approach for treating cognitive deficits associated with Alzheimer's disease. The purpose of this study was to compare the binding affinities, functional activities, and effects on neuropharmacological responses associated with cognition of two highly selective 5-HT(4) receptor agonists, prucalopride and 6,7-dihydro-4-hydroxy-7-isopropyl-6-oxo-N-[3-(piperidin-1-yl)propyl]thieno[2,3-b]pyridine-5-carboxamide (PRX-03140). In vitro, prucalopride and PRX-03140 bound to native rat brain 5-HT(4) receptors with K(i) values of 30 nM and 110 nM, respectively, and increased cAMP production in human embryonic kidney-293 cells expressing recombinant rat 5-HT(4) receptors. In vivo receptor occupancy studies established that prucalopride and PRX-03140 were able to penetrate the brain and bound to 5-HT(4) receptors in rat brain, achieving 50% receptor occupancy at free brain exposures of 330 nM and 130 nM, respectively. Rat microdialysis studies revealed that prucalopride maximally increased ACh and histamine levels in the prefrontal cortex at 5 and 10 mg/kg, whereas PRX-03140 significantly increased cortical histamine levels at 50 mg/kg, failing to affect ACh release at doses lower than 150 mg/kg. In combination studies, donepezil-induced increases in cortical ACh levels were potentiated by prucalopride and PRX-03140. Electrophysiological studies in rats demonstrated that both compounds increased the power of brainstem-stimulated hippocampal θ oscillations at 5.6 mg/kg. These findings show for the first time that the 5-HT(4) receptor agonists prucalopride and PRX-03140 can increase cortical ACh and histamine levels, augment donepezil-induced ACh increases, and increase stimulated-hippocampal θ power, all neuropharmacological parameters consistent with potential positive effects on cognitive processes.


Subject(s)
Acetylcholine/metabolism , Benzofurans/pharmacology , Hippocampus/drug effects , Histamine/metabolism , Prefrontal Cortex/drug effects , Pyridones/pharmacology , Serotonin 5-HT4 Receptor Agonists/pharmacology , Thiophenes/pharmacology , Animals , Area Under Curve , Chromatography, High Pressure Liquid , Electroencephalography , Hippocampus/metabolism , Humans , Male , Microdialysis , Prefrontal Cortex/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Serotonin, 5-HT4/metabolism , Serotonin/chemistry , Serotonin/metabolism , Tandem Mass Spectrometry
3.
Protein Expr Purif ; 65(2): 122-32, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19174191

ABSTRACT

Compounds capable of stimulating soluble guanylate cyclase (sGC) activity might become important new tools to treat hypertension. While rational design of these drugs would be aided by elucidation of the sGC three-dimensional structure and molecular mechanism of activation, such efforts also require quantities of high quality enzyme that are challenging to produce. We implemented the titerless infected-cells preservation and scale-up (TIPS) methodology to express the heterodimeric sGC. In the TIPS method, small-scale insect cell cultures were first incubated with a recombinant baculovirus which replicated in the cells. The baculovirus-infected insect cells (BIIC) were harvested and frozen prior to cell lysis and the subsequent escape of the newly replicated virus into the culture supernatant. Thawed BIIC stocks were ultimately used for subsequent scale up. As little as 1 mL of BIIC was needed to infect a 100-L insect cell culture, in contrast to the usual 1L of high-titer, virus stock supernatants. The TIPS method eliminates the need and protracted time for titering virus supernatants, and provides stable, concentrated storage of recombinant baculovirus in the form of infected cells. The latter is particularly advantageous for virus stocks which are unstable, such as those for sGC, and provides a highly efficient alternative for baculovirus storage and expression. The TIPS process enabled efficient scale up to 100-L batches, each producing about 200mg of active sGC. Careful adjustment of expression culture conditions over the course of several 100-L runs provided uniform starting titers, specific activity, and composition of contaminating proteins that facilitated development of a process that reproducibly yielded highly active, purified sGC.


Subject(s)
Baculoviridae/genetics , Guanylate Cyclase/biosynthesis , Receptors, Cytoplasmic and Nuclear/biosynthesis , Spodoptera/cytology , Spodoptera/metabolism , Animals , Baculoviridae/physiology , Blotting, Western , Cells, Cultured , Electrophoresis, Polyacrylamide Gel , Enzyme Activation , Guanylate Cyclase/chemistry , Guanylate Cyclase/metabolism , Humans , Receptors, Cytoplasmic and Nuclear/chemistry , Receptors, Cytoplasmic and Nuclear/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Soluble Guanylyl Cyclase , Spodoptera/virology , Time Factors
4.
Nat Struct Mol Biol ; 14(5): 413-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17435765

ABSTRACT

Proprotein convertase subtilisin kexin type 9 (PCSK9) lowers the abundance of surface low-density lipoprotein (LDL) receptor through an undefined mechanism. The structure of human PCSK9 shows the subtilisin-like catalytic site blocked by the prodomain in a noncovalent complex and inaccessible to exogenous ligands, and that the C-terminal domain has a novel fold. Biosensor studies show that PCSK9 binds the extracellular domain of LDL receptor with K(d) = 170 nM at the neutral pH of plasma, but with a K(d) as low as 1 nM at the acidic pH of endosomes. The D374Y gain-of-function mutant, associated with hypercholesterolemia and early-onset cardiovascular disease, binds the receptor 25 times more tightly than wild-type PCSK9 at neutral pH and remains exclusively in a high-affinity complex at the acidic pH. PCSK9 may diminish LDL receptors by a mechanism that requires direct binding but not necessarily receptor proteolysis.


Subject(s)
Hypercholesterolemia/genetics , Mutation, Missense/physiology , Serine Endopeptidases/metabolism , Binding Sites , Humans , Hydrogen-Ion Concentration , Hypercholesterolemia/etiology , Proprotein Convertase 9 , Proprotein Convertases , Protein Binding/genetics , Protein Conformation , Receptors, LDL/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/genetics
5.
Nat Struct Mol Biol ; 14(2): 106-13, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17237796

ABSTRACT

Cholesteryl ester transfer protein (CETP) shuttles various lipids between lipoproteins, resulting in the net transfer of cholesteryl esters from atheroprotective, high-density lipoproteins (HDL) to atherogenic, lower-density species. Inhibition of CETP raises HDL cholesterol and may potentially be used to treat cardiovascular disease. Here we describe the structure of CETP at 2.2-A resolution, revealing a 60-A-long tunnel filled with two hydrophobic cholesteryl esters and plugged by an amphiphilic phosphatidylcholine at each end. The two tunnel openings are large enough to allow lipid access, which is aided by a flexible helix and possibly also by a mobile flap. The curvature of the concave surface of CETP matches the radius of curvature of HDL particles, and potential conformational changes may occur to accommodate larger lipoprotein particles. Point mutations blocking the middle of the tunnel abolish lipid-transfer activities, suggesting that neutral lipids pass through this continuous tunnel.


Subject(s)
Cholesterol Ester Transfer Proteins/chemistry , Cholesterol Esters/chemistry , Models, Molecular , Phosphatidylcholines/chemistry , Triglycerides/chemistry , Animals , Binding Sites , CHO Cells , Cholesterol Ester Transfer Proteins/genetics , Cricetinae , Cricetulus , Crystallography, X-Ray , Humans , Hydrophobic and Hydrophilic Interactions , Ligands , Point Mutation , Protein Binding , Protein Conformation
6.
Biotechnol Bioeng ; 90(5): 552-67, 2005 Jun 05.
Article in English | MEDLINE | ID: mdl-15830340

ABSTRACT

NS0, a nonsecreting mouse myeloma cell, is a major host line used for recombinant antibody production. These cells have a cholesterol-dependent phenotype and rely on an exogenous supply of cholesterol for their survival and growth. To better understand the physiology underlying cholesterol dependence, we compared NS0 cells, cultivated under standard cholesterol-dependent growth conditions (NS0), to cells adapted to cholesterol-independent conditions (NS0 revertant, NS0_r). Large-scale transcriptional analyses were done using the Affymetrix GeneChip array, MG-U74Av2. The transcripts expressed differentially across the two cell lines were identified. Additionally, proteomic tools were employed to analyze cell lysates from these two cell lines. Cellular proteins from both NS0 and NS0_r were subjected to 2D gel electrophoresis. MALDI-TOF mass spectrometry was performed to determine the identity of the differentially expressed spots. We examined the expression level of mouse genes directly involved in cholesterol biosynthesis, lipid metabolism, and central energy metabolism. Most of these genes were downregulated in the revertant cell type, NS0_r, compared to NS0. Overall, a large number of genes are expressed differentially, indicating that the reversal of cholesterol dependency has a profound effect on cell physiology. It is probable that a single gene mutation, activation, or inactivation is responsible for cholesterol auxotrophy. However, the wide-ranging changes in gene expression point to the distinct possibility of a regulatory event affecting the reversibility of auxotrophy, either directly or indirectly.


Subject(s)
Cholesterol/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , Multiple Myeloma/metabolism , Neoplasm Proteins/metabolism , Proteome/metabolism , Signal Transduction , Animals , Cell Line, Tumor , Mice , Models, Biological , Multienzyme Complexes/metabolism , Oligonucleotide Array Sequence Analysis/methods
7.
Metab Eng ; 7(1): 27-37, 2005 Jan.
Article in English | MEDLINE | ID: mdl-15721808

ABSTRACT

The avermectin analog doramectin (CHC-B1), sold commercially as Dectomax, is biosynthesized by Streptomyces avermitilis. aveC, a gene encoding an unknown mechanistic function, plays an essential role in the production of doramectin (avermectin CHC-B1), modulating the production ratio of CHC-B1 to other avermectins, most notably the undesirable analog CHC-B2. To improve the production ratio for doramectin, the aveC gene was subjected to iterative rounds of semi-synthetic DNA shuffling. Libraries of shuffled aveC gene variants were transformed into S. avermitilis, screened using a miniaturized 96-well growth and production format, and analyzed by high throughput mass spectrometry to determine CHC-B2:CHC-B1 ratios. Several improved aveC variants were identified; the best shuffled gene encoded 10 amino acid mutations, and conferred a final CHC-B2:CHC-B1 ratio of 0.07:1, a 23-fold improvement over the starting gene (aveC wild type). Chromosomal insertion of an improved aveC shuffled gene into a high titer S. avermitilis strain yielded an improved doramectin production strain. This strain is under development to be used commercially, and is expected to provide considerable cost savings in large-scale manufacture, as well as significantly reducing by-product levels of CHC-B2 requiring disposal.


Subject(s)
DNA Shuffling/methods , Directed Molecular Evolution/methods , Genetic Enhancement/methods , Industrial Microbiology/methods , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Streptomyces/genetics , Streptomyces/metabolism , Gene Expression Regulation, Bacterial/genetics , Genetic Variation/genetics , Mutation , Pilot Projects
8.
Org Biomol Chem ; 1(16): 2840-7, 2003 Aug 21.
Article in English | MEDLINE | ID: mdl-12968333

ABSTRACT

Ivermectin, a mixture of 22,23-dihydroavermectin B1a9 with minor amounts of 22,23-dihydroavermectin B1b 10, is one of the most successful veterinary antiparasitic drugs ever produced. In humans, ivermectin has been used for the treatment of African river blindness (onchocerciasis) resulting in an encouraging decrease in the prevalence of skin and eye diseases linked to this infection. The components of ivermectin are currently synthesized by chemical hydrogenation of a specific double bond at C22-C23 in the polyketide macrolides avermectins B1a 5 and B1b 6, broad-spectrum antiparasitic agents isolated from the soil bacterium Streptomyces avermitilis. We describe here the production of such compounds (22,23-dihydroavermectins B1a 9 and A1a 11) by direct fermentation of a recombinant strain of S. avermitilis containing an appropriately-engineered polyketide synthase (PKS). This suggests the feasibility of a direct biological route to this valuable drug.


Subject(s)
Ivermectin/analogs & derivatives , Ivermectin/chemistry , Ivermectin/metabolism , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Streptomyces/metabolism , Blotting, Southern , Drug Design , Fermentation , Genes, Bacterial , Multienzyme Complexes/genetics , Mutation , Protein Structure, Tertiary , Streptomyces/genetics
9.
Biotechnol Bioeng ; 82(3): 359-69, 2003 May 05.
Article in English | MEDLINE | ID: mdl-12599263

ABSTRACT

Avermectin and its analogues are produced by the actinomycete Streptomyces avermitilis and are major commercial products for parasite control in the fields of animal health, agriculture, and human infections. Historically, the avermectin analogue doramectin (CHC-B1), which is sold commercially as Dectomax is co-produced during fermentation with the undesired analogue CHC-B2 at a CHC-B2:CHC-B1 ratio of 1.6:1. Although the identification of the avermectin gene cluster has allowed for characterization of most of the biosynthetic pathway, the mechanism for determining the avermectin B2:B1 ratio remains unclear. The aveC gene, which has an essential role in avermectin biosynthesis, was inactivated by insertional inactivation and mutated by site-specific mutagenesis and error-prone PCR. Several unrelated mutations were identified that resulted in improved ratios of the desirable avermectin analogue CHC-B1, produced relative to the undesired CHC-B2 fermentation component. High-throughput (HTP) screening of cultures grown on solid-phase fermentation plates and analysis using electrospray mass spectrometry was implemented to significantly increase screening capability. An aveC gene with mutations that result in a 4-fold improvement in the ratio of doramectin to CHC-B2 was identified. Subsequent integration of the enhanced aveC gene into the chromosome of the S. avermitilis production strain demonstrates the successful engineering of a specific biosynthetic pathway gene to significantly improve fermentation productivity of a commercially important product.


Subject(s)
Gene Expression Regulation, Bacterial/physiology , Ivermectin/analogs & derivatives , Ivermectin/metabolism , Protein Engineering/methods , Streptomyces/genetics , Streptomyces/metabolism , Base Sequence , Chloride Channels , Cloning, Molecular , DNA Mutational Analysis , Gene Expression Profiling/methods , Genetic Enhancement/methods , Genetic Variation/genetics , Genome, Bacterial , Ivermectin/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , Quality Control , Recombination, Genetic , Species Specificity , Streptomyces/classification
SELECTION OF CITATIONS
SEARCH DETAIL