Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Science ; 352(6283): aaf1015, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27081075

ABSTRACT

The nuclear pore complex (NPC) controls the transport of macromolecules between the nucleus and cytoplasm, but its molecular architecture has thus far remained poorly defined. We biochemically reconstituted NPC core protomers and elucidated the underlying protein-protein interaction network. Flexible linker sequences, rather than interactions between the structured core scaffold nucleoporins, mediate the assembly of the inner ring complex and its attachment to the NPC coat. X-ray crystallographic analysis of these scaffold nucleoporins revealed the molecular details of their interactions with the flexible linker sequences and enabled construction of full-length atomic structures. By docking these structures into the cryoelectron tomographic reconstruction of the intact human NPC and validating their placement with our nucleoporin interactome, we built a composite structure of the NPC symmetric core that contains ~320,000 residues and accounts for ~56 megadaltons of the NPC's structured mass. Our approach provides a paradigm for the structure determination of similarly complex macromolecular assemblies.


Subject(s)
Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Nuclear Pore/ultrastructure , Protein Interaction Maps , Active Transport, Cell Nucleus , Amino Acid Sequence , Cryoelectron Microscopy , Crystallography, X-Ray , Cytoplasm/metabolism , Electron Microscope Tomography , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Humans , Molecular Sequence Data , Nuclear Pore/chemistry , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Protein Structure, Tertiary , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism
2.
Science ; 350(6256): 56-64, 2015 Oct 02.
Article in English | MEDLINE | ID: mdl-26316600

ABSTRACT

The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. We present the reconstitution and interdisciplinary analyses of the ~425-kilodalton inner ring complex (IRC), which forms the central transport channel and diffusion barrier of the NPC, revealing its interaction network and equimolar stoichiometry. The Nsp1•Nup49•Nup57 channel nucleoporin heterotrimer (CNT) attaches to the IRC solely through the adaptor nucleoporin Nic96. The CNT•Nic96 structure reveals that Nic96 functions as an assembly sensor that recognizes the three-dimensional architecture of the CNT, thereby mediating the incorporation of a defined CNT state into the NPC. We propose that the IRC adopts a relatively rigid scaffold that recruits the CNT to primarily form the diffusion barrier of the NPC, rather than enabling channel dilation.


Subject(s)
Chaetomium/ultrastructure , Fungal Proteins/ultrastructure , Nuclear Pore Complex Proteins/ultrastructure , Nuclear Pore/ultrastructure , Nuclear Proteins/ultrastructure , Amino Acid Sequence , Chaetomium/metabolism , Fungal Proteins/chemistry , Molecular Sequence Data , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Proteins/chemistry , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary
3.
Science ; 347(6226): 1148-52, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25745173

ABSTRACT

The nuclear pore complex (NPC) constitutes the sole gateway for bidirectional nucleocytoplasmic transport. Despite half a century of structural characterization, the architecture of the NPC remains unknown. Here we present the crystal structure of a reconstituted ~400-kilodalton coat nucleoporin complex (CNC) from Saccharomyces cerevisiae at a 7.4 angstrom resolution. The crystal structure revealed a curved Y-shaped architecture and the molecular details of the coat nucleoporin interactions forming the central "triskelion" of the Y. A structural comparison of the yeast CNC with an electron microscopy reconstruction of its human counterpart suggested the evolutionary conservation of the elucidated architecture. Moreover, 32 copies of the CNC crystal structure docked readily into a cryoelectron tomographic reconstruction of the fully assembled human NPC, thereby accounting for ~16 megadalton of its mass.


Subject(s)
Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/ultrastructure , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae/ultrastructure , Crystallography, X-Ray , Humans , Protein Structure, Secondary , Protein Structure, Tertiary
4.
Proc Natl Acad Sci U S A ; 111(7): 2530-5, 2014 Feb 18.
Article in English | MEDLINE | ID: mdl-24505056

ABSTRACT

Nucleocytoplasmic transport is facilitated by nuclear pore complexes (NPCs), which are massive proteinaceous transport channels embedded in the nuclear envelope. Nup192 is a major component of an adaptor nucleoporin subcomplex proposed to link the NPC coat with the central transport channel. Here, we present the structure of the ∼110-kDa N-terminal domain (NTD) of Nup192 at 2.7-Å resolution. The structure reveals an open ring-shaped architecture composed of Huntingtin, EF3, PP2A, and TOR1 (HEAT) and Armadillo (ARM) repeats. A comparison of different conformations indicates that the NTD consists of two rigid halves connected by a flexible hinge. Unexpectedly, the two halves of the ring are structurally related to karyopherin-α (Kap-α) and ß-karyopherin family members. Biochemically, we identify a conserved patch that binds an unstructured segment in Nup53 and show that a C-terminal tail region binds to a putative helical fragment in Nic96. The Nup53 segment that binds Nup192 is a classical nuclear localization-like sequence that interacts with Kap-α in a mutually exclusive and mechanistically distinct manner. The disruption of the Nup53 and Nic96 binding sites in vivo yields growth and mRNA export defects, revealing their critical role in proper NPC function. Surprisingly, both interactions are dispensable for NPC localization, suggesting that Nup192 possesses another nucleoporin interaction partner. These data indicate that the structured domains in the adaptor nucleoporin complex are held together by peptide interactions that resemble those found in karyopherin•cargo complexes and support the proposal that the adaptor nucleoporins arose from ancestral karyopherins.


Subject(s)
Evolution, Molecular , Karyopherins/genetics , Models, Molecular , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/genetics , Calorimetry , Crystallography, X-Ray , In Situ Hybridization, Fluorescence , Karyopherins/chemistry , Mutagenesis, Site-Directed , Nuclear Pore Complex Proteins/metabolism , Saccharomyces cerevisiae Proteins/metabolism
5.
Nature ; 499(7456): 111-4, 2013 Jul 04.
Article in English | MEDLINE | ID: mdl-23698368

ABSTRACT

Facilitates chromatin transcription (FACT) is a conserved histone chaperone that reorganizes nucleosomes and ensures chromatin integrity during DNA transcription, replication and repair. Key to the broad functions of FACT is its recognition of histones H2A-H2B (ref. 2). However, the structural basis for how histones H2A-H2B are recognized and how this integrates with the other functions of FACT, including the recognition of histones H3-H4 and other nuclear factors, is unknown. Here we reveal the crystal structure of the evolutionarily conserved FACT chaperone domain Spt16M from Chaetomium thermophilum, in complex with the H2A-H2B heterodimer. A novel 'U-turn' motif scaffolded onto a Rtt106-like module embraces the α1 helix of H2B. Biochemical and in vivo assays validate the structure and dissect the contribution of histone tails and H3-H4 towards Spt16M binding. Furthermore, we report the structure of the FACT heterodimerization domain that connects FACT to replicative polymerases. Our results show that Spt16M makes several interactions with histones, which we suggest allow the module to invade the nucleosome gradually and block the strongest interaction of H2B with DNA. FACT would thus enhance 'nucleosome breathing' by re-organizing the first 30 base pairs of nucleosomal histone-DNA contacts. Our snapshot of the engagement of the chaperone with H2A-H2B and the structures of all globular FACT domains enable the high-resolution analysis of the vital chaperoning functions of FACT, shedding light on how the complex promotes the activity of enzymes that require nucleosome reorganization.


Subject(s)
Chaetomium/chemistry , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Histones/metabolism , Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Amino Acid Motifs , Conserved Sequence , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA Replication , Histones/chemistry , Hydrophobic and Hydrophilic Interactions , Models, Molecular , Nucleosomes/chemistry , Nucleosomes/metabolism , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary , Substrate Specificity
6.
J Mol Biol ; 425(8): 1318-29, 2013 Apr 26.
Article in English | MEDLINE | ID: mdl-23353830

ABSTRACT

The nuclear pore complex is the sole mediator of bidirectional transport between the nucleus and cytoplasm. Nup358 is a metazoan-specific nucleoporin that localizes to the cytoplasmic filaments and provides several binding sites for the mobile nucleocytoplasmic transport machinery. Here we present the crystal structure of the C-terminal domain (CTD) of Nup358 at 1.75Å resolution. The structure reveals that the CTD adopts a cyclophilin-like fold with a non-canonical active-site configuration. We determined biochemically that the CTD possesses weak peptidyl-prolyl isomerase activity and show that the active-site cavity mediates a weak association with the human immunodeficiency virus-1 capsid protein, supporting its role in viral infection. Overall, the surface is evolutionarily conserved, suggesting that the CTD serves as a protein-protein interaction platform. However, we demonstrate that the CTD is dispensable for nuclear envelope localization of Nup358, suggesting that the CTD does not interact with other nucleoporins.


Subject(s)
Molecular Chaperones/chemistry , Molecular Chaperones/metabolism , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/metabolism , Crystallography, X-Ray , HIV Core Protein p24/metabolism , Humans , Models, Molecular , Peptidylprolyl Isomerase/metabolism , Protein Conformation
7.
J Mol Biol ; 423(5): 752-65, 2012 Nov 09.
Article in English | MEDLINE | ID: mdl-22959972

ABSTRACT

Key steps in mRNA export are the nuclear assembly of messenger ribonucleoprotein particles (mRNPs), the translocation of mRNPs through the nuclear pore complex (NPC), and the mRNP remodeling events at the cytoplasmic side of the NPC. Nup358/RanBP2 is a constituent of the cytoplasmic filaments of the NPC specific to higher eukaryotes and provides a multitude of binding sites for the nucleocytoplasmic transport machinery. Here, we present the crystal structure of the Nup358 N-terminal domain (NTD) at 0.95Å resolution. The structure reveals an α-helical domain that harbors three central tetratricopeptide repeats (TPRs), flanked on each side by an additional solvating amphipathic α helix. Overall, the NTD adopts an unusual extended conformation that lacks the characteristic peptide-binding groove observed in canonical TPR domains. Strikingly, the vast majority of the NTD surface exhibits an evolutionarily conserved, positive electrostatic potential, and we demonstrate that the NTD possesses the capability to bind single-stranded RNA in solution. Together, these data suggest that the NTD contributes to mRNP remodeling events at the cytoplasmic face of the NPC.


Subject(s)
Molecular Chaperones/chemistry , Nuclear Pore Complex Proteins/chemistry , Amino Acid Sequence , Animals , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , RNA/metabolism , Sequence Homology, Amino Acid
8.
J Mol Biol ; 419(5): 330-46, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22480613

ABSTRACT

The cytoplasmic filament nucleoporins of the nuclear pore complex (NPC) are critically involved in nuclear export and remodeling of mRNA ribonucleoprotein particles and are associated with various human malignancies. Here, we report the crystal structure of the Nup98 C-terminal autoproteolytic domain, frequently missing from leukemogenic forms of the protein, in complex with the N-terminal domain of Nup82 and the C-terminal tail fragment of Nup159. The Nup82 ß propeller serves as a noncooperative binding platform for both binding partners. Interaction of Nup98 with Nup82 occurs through a reciprocal exchange of loop structures. Strikingly, the same Nup98 groove promiscuously interacts with Nup82 and Nup96 in a mutually excusive fashion. Simultaneous disruption of both Nup82 interactions in yeast causes severe defects in mRNA export, while the severing of a single interaction is tolerated. Thus, the cytoplasmic filament network of the NPC is robust, consistent with its essential function in nucleocytoplasmic transport.


Subject(s)
Nuclear Pore Complex Proteins/chemistry , Nuclear Pore/chemistry , Oncogene Proteins/chemistry , Animals , Crystallography, X-Ray , Cytoplasm/metabolism , Humans , Mice , Protein Conformation , Saccharomyces cerevisiae Proteins/chemistry
10.
Proc Natl Acad Sci U S A ; 105(26): 8884-9, 2008 Jul 01.
Article in English | MEDLINE | ID: mdl-18579787

ABSTRACT

The FACT complex is a conserved cofactor for RNA polymerase II elongation through nucleosomes. FACT bears histone chaperone activity and contributes to chromatin integrity. However, the molecular mechanisms behind FACT function remain elusive. Here we report biochemical, structural, and mutational analyses that identify the peptidase homology domain of the Schizosaccharomyces pombe FACT large subunit Spt16 (Spt16-N) as a binding module for histones H3 and H4. The 2.1-A crystal structure of Spt16-N reveals an aminopeptidase P fold whose enzymatic activity has been lost. Instead, the highly conserved fold directly binds histones H3-H4 through a tight interaction with their globular core domains, as well as with their N-terminal tails. Mutations within a conserved surface pocket in Spt16-N or posttranslational modification of the histone H4 tail reduce interaction in vitro, whereas the globular domains of H3-H4 and the H3 tail bind distinct Spt16-N surfaces. Our analysis suggests that the N-terminal domain of Spt16 may add to the known H2A-H2B chaperone activity of FACT by including a H3-H4 tail and H3-H4 core binding function mediated by the N terminus of Spt16. We suggest that these interactions may aid FACT-mediated nucleosome reorganization events.


Subject(s)
Aminopeptidases/chemistry , Histones/metabolism , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Schizosaccharomyces pombe Proteins/chemistry , Schizosaccharomyces/metabolism , Aminopeptidases/metabolism , Catalysis , Enzyme Activation , Histones/chemistry , Models, Molecular , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary , Schizosaccharomyces/enzymology , Schizosaccharomyces pombe Proteins/metabolism
11.
J Biol Chem ; 281(37): 27557-65, 2006 Sep 15.
Article in English | MEDLINE | ID: mdl-16766527

ABSTRACT

Glutathione (GSH) plays a crucial role in plant metabolism and stress response. The rate-limiting step in the biosynthesis of GSH is catalyzed by glutamate cysteine ligase (GCL) the activity of which is tightly regulated. The regulation of plant GCLs is poorly understood. The crystal structure of substrate-bound GCL from Brassica juncea at 2.1-A resolution reveals a plant-unique regulatory mechanism based on two intramolecular redox-sensitive disulfide bonds. Reduction of one disulfide bond allows a beta-hairpin motif to shield the active site of B. juncea GCL, thereby preventing the access of substrates. Reduction of the second disulfide bond reversibly controls dimer to monomer transition of B. juncea GCL that is associated with a significant inactivation of the enzyme. These regulatory events provide a molecular link between high GSH levels in the plant cell and associated down-regulation of its biosynthesis. Furthermore, known mutations in the Arabidopsis GCL gene affect residues in the close proximity of the active site and thus explain the decreased GSH levels in mutant plants. In particular, the mutation in rax1-1 plants causes impaired binding of cysteine.


Subject(s)
Brassica/enzymology , Glutamate-Cysteine Ligase/chemistry , Oxidation-Reduction , Arabidopsis/enzymology , Arabidopsis/genetics , Crystallography, X-Ray , Cysteine/chemistry , Disulfides/chemistry , Models, Chemical , Models, Molecular , Mutation , Plant Proteins/metabolism , Protein Binding , Protein Structure, Secondary , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL