Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725347

ABSTRACT

The synthesis of thiazolines, thiazolidines, and thiazolidinones has been extensively studied, due to their biological activity related to neurodegenerative diseases, such as Parkinson's and Alzheimer's, as well as their antiparasitic and antihypertensive properties. The closely related thiazolidin-2-imines have been studied less, and efficient strategies for synthesizing them, mainly based on the reaction of propargylamines with isothiocyanates, have been explored less. The use of one-pot approaches, providing modular, straightforward, and sustainable access to these compounds, has also received very little attention. Herein, we report a novel, one-pot, multicomponent, copper-catalyzed reaction among primary amines, ketones, terminal alkynes, and isothiocyanates, toward thiazolidin-2-imines bearing quaternary carbon centers on the five-membered ring, in good to excellent yields. Density functional theory calculations, combined with experimental mechanistic findings, suggest that the copper(I)-catalyzed reaction between the in situ-formed propargylamines and isothiocyanates proceeds with a lower energy barrier in the pathway leading to the S-cyclized product, compared to that of the N-cyclized one, toward the chemo- and regioselective formation of 5-exo-dig S-cyclized thiazolidin-2-imines.

2.
Biochim Biophys Acta Biomembr ; 1866(2): 184258, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37995846

ABSTRACT

Experimental binding free energies of 27 adamantyl amines against the influenza M2(22-46) WT tetramer, in its closed form at pH 8, were measured by ITC in DPC micelles. The measured Kd's range is ~44 while the antiviral potencies (IC50) range is ~750 with a good correlation between binding free energies computed with Kd and IC50 values (r = 0.76). We explored with MD simulations (ff19sb, CHARMM36m) the binding profile of complexes with strong, moderate and weak binders embedded in DMPC, DPPC, POPC or a viral mimetic membrane and using different experimental starting structures of M2. To predict accurately differences in binding free energy in response to subtle changes in the structure of the ligands, we performed 18 alchemical perturbative single topology FEP/MD NPT simulations (OPLS2005) using the BAR estimator (Desmond software) and 20 dual topology calculations TI/MD NVT simulations (ff19sb) using the MBAR estimator (Amber software) for adamantyl amines in complex with M2(22-46) WT in DMPC, DPPC, POPC. We observed that both methods with all lipids show a very good correlation between the experimental and calculated relative binding free energies (r = 0.77-0.87, mue = 0.36-0.92 kcal mol-1) with the highest performance achieved with TI/MBAR and lowest performance with FEP/BAR in DMPC bilayers. When antiviral potencies are used instead of the Kd values for computing the experimental binding free energies we obtained also good performance with both FEP/BAR (r = 0.83, mue = 0.75 kcal mol-1) and TI/MBAR (r = 0.69, mue = 0.77 kcal mol-1).


Subject(s)
Influenza, Human , Lipid Bilayers , Humans , Lipid Bilayers/chemistry , Influenza, Human/metabolism , Molecular Dynamics Simulation , Amines , Dimyristoylphosphatidylcholine/chemistry , Antiviral Agents/pharmacology
4.
J Comput Aided Mol Des ; 37(12): 607-656, 2023 12.
Article in English | MEDLINE | ID: mdl-37597063

ABSTRACT

We selected 145 reference organic molecules that include model fragments used in computer-aided drug design. We calculated 158 conformational energies and barriers using force fields, with wide applicability in commercial and free softwares and extensive application on the calculation of conformational energies of organic molecules, e.g. the UFF and DREIDING force fields, the Allinger's force fields MM3-96, MM3-00, MM4-8, the MM2-91 clones MMX and MM+, the MMFF94 force field, MM4, ab initio Hartree-Fock (HF) theory with different basis sets, the standard density functional theory B3LYP, the second-order post-HF MP2 theory and the Domain-based Local Pair Natural Orbital Coupled Cluster DLPNO-CCSD(T) theory, with the latter used for accurate reference values. The data set of the organic molecules includes hydrocarbons, haloalkanes, conjugated compounds, and oxygen-, nitrogen-, phosphorus- and sulphur-containing compounds. We reviewed in detail the conformational aspects of these model organic molecules providing the current understanding of the steric and electronic factors that determine the stability of low energy conformers and the literature including previous experimental observations and calculated findings. While progress on the computer hardware allows the calculations of thousands of conformations for later use in drug design projects, this study is an update from previous classical studies that used, as reference values, experimental ones using a variety of methods and different environments. The lowest mean error against the DLPNO-CCSD(T) reference was calculated for MP2 (0.35 kcal mol-1), followed by B3LYP (0.69 kcal mol-1) and the HF theories (0.81-1.0 kcal mol-1). As regards the force fields, the lowest errors were observed for the Allinger's force fields MM3-00 (1.28 kcal mol-1), ΜΜ3-96 (1.40 kcal mol-1) and the Halgren's MMFF94 force field (1.30 kcal mol-1) and then for the MM2-91 clones MMX (1.77 kcal mol-1) and MM+ (2.01 kcal mol-1) and MM4 (2.05 kcal mol-1). The DREIDING (3.63 kcal mol-1) and UFF (3.77 kcal mol-1) force fields have the lowest performance. These model organic molecules we used are often present as fragments in drug-like molecules. The values calculated using DLPNO-CCSD(T) make up a valuable data set for further comparisons and for improved force field parameterization.


Subject(s)
Benchmarking , Software , Thermodynamics , Molecular Conformation , Physical Phenomena
5.
ChemMedChem ; 18(16): e202300182, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37377066

ABSTRACT

We compared the anti-influenza potencies of 57 adamantyl amines and analogs against influenza A virus with serine-31 M2 proton channel, usually termed as WT M2 channel, which is amantadine sensitive. We also tested a subset of these compounds against viruses with the amantadine-resistant L26F, V27A, A30T, G34E M2 mutant channels. Four compounds inhibited WT M2 virus in vitro with mid-nanomolar potency, with 27 compounds showing sub-micromolar to low micromolar potency. Several compounds inhibited L26F M2 virus in vitro with sub-micromolar to low micromolar potency, but only three compounds blocked L26F M2-mediated proton current as determined by electrophysiology (EP). One compound was found to be a triple blocker of WT, L26F, V27A M2 channels by EP assays, but did not inhibit V27A M2 virus in vitro, and one compound inhibited WT, L26F, V27A M2 in vitro without blocking V27A M2 channel. One compound blocked only L26F M2 channel by EP, but did not inhibit virus replication. The triple blocker compound is as long as rimantadine, but could bind and block V27A M2 channel due to its larger girth as revealed by molecular dynamics simulations, while MAS NMR informed on the interaction of the compound with M2(18-60) WT or L26F or V27A.


Subject(s)
Influenza, Human , Molecular Dynamics Simulation , Humans , Antiviral Agents/chemistry , Amines/pharmacology , Protons , Mutation , Influenza, Human/drug therapy , Amantadine/pharmacology , Amantadine/therapeutic use , Viral Matrix Proteins/chemistry , Drug Resistance, Viral
6.
J Comput Aided Mol Des ; 37(5-6): 245-264, 2023 06.
Article in English | MEDLINE | ID: mdl-37129848

ABSTRACT

N-geranyl-N΄-(2-adamantyl)ethane-1,2-diamine (SQ109) is a tuberculosis drug that has high potency against Mycobacterium tuberculosis (Mtb) and may function by blocking cell wall biosynthesis. After the crystal structure of MmpL3 from Mycobacterium smegmatis in complex with SQ109 became available, it was suggested that SQ109 inhibits Mmpl3 mycolic acid transporter. Here, we showed using molecular dynamics (MD) simulations that the binding profile of nine SQ109 analogs with inhibitory potency against Mtb and alkyl or aryl adducts at C-2 or C-1 adamantyl carbon to MmpL3 was consistent with the X-ray structure of MmpL3 - SQ109 complex. We showed that rotation of SQ109 around carbon-carbon bond in the monoprotonated ethylenediamine unit favors two gauche conformations as minima in water and lipophilic solvent using DFT calculations as well as inside the transporter's binding area using MD simulations. The binding assays in micelles suggested that the binding affinity of the SQ109 analogs was increased for the larger, more hydrophobic adducts, which was consistent with our results from MD simulations of the SQ109 analogues suggesting that sizeable C-2 adamantyl adducts of SQ109 can fill a lipophilic region between Y257, Y646, F260 and F649 in MmpL3. This was confirmed quantitatively by our calculations of the relative binding free energies using the thermodynamic integration coupled with MD simulations method with a mean assigned error of 0.74 kcal mol-1 compared to the experimental values.


Subject(s)
Antitubercular Agents , Mycobacterium tuberculosis , Antitubercular Agents/pharmacology , Molecular Dynamics Simulation , Bacterial Proteins/chemistry , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/metabolism , Ethylenediamines/metabolism , Ethylenediamines/pharmacology
7.
J Comput Chem ; 41(25): 2177-2188, 2020 09 30.
Article in English | MEDLINE | ID: mdl-32735736

ABSTRACT

The correct balance between attractive, repulsive and peptide hydrogen bonding interactions must be attained for proteins to fold correctly. To investigate these important contributors, we sought a comparison of the folding between two 25-residues peptides, the influenza A M2 protein transmembrane domain (M2TM) and the 25-Ala (Ala25 ). M2TM forms a stable α-helix as is shown by circular dichroism (CD) experiments. Molecular dynamics (MD) simulations with adaptive tempering show that M2TM monomer is more dynamic in nature and quickly interconverts between an ensemble of various α-helical structures, and less frequently turns and coils, compared to one α-helix for Ala25 . DFT calculations suggest that folding from the extended structure to the α-helical structure is favored for M2TM compared with Ala25 . This is due to CH⋯O attractive interactions which favor folding to the M2TM α-helix, and cannot be described accurately with a force field. Using natural bond orbital (NBO) analysis and quantum theory atoms in molecules (QTAIM) calculations, 26 CH⋯O interactions and 22 NH⋯O hydrogen bonds are calculated for M2TM. The calculations show that CH⋯O hydrogen bonds, although individually weaker, have a cumulative effect that cannot be ignored and may contribute as much as half of the total hydrogen bonding energy, when compared to NH⋯O, to the stabilization of the α-helix in M2TM. Further, a strengthening of NH⋯O hydrogen bonding interactions is calculated for M2TM compared to Ala25 . Additionally, these weak CH⋯O interactions can dissociate and associate easily leading to the ensemble of folded structures for M2TM observed in folding MD simulations.


Subject(s)
Orthomyxoviridae/chemistry , Peptides/chemistry , Viral Proteins/chemistry , Amino Acid Sequence , Density Functional Theory , Humans , Hydrogen Bonding , Molecular Dynamics Simulation , Protein Conformation, alpha-Helical , Protein Domains , Protein Folding , Structure-Activity Relationship
8.
J Med Chem ; 60(5): 1716-1733, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28107633

ABSTRACT

While aminoadamantanes are well-established inhibitors of the influenza A M2 proton channel, the mechanisms by which they are rendered ineffective against M2S31N are unclear. Solid state NMR, isothermal titration calorimetry, electrophysiology, antiviral assays, and molecular dynamics simulations suggest stronger binding interactions for aminoadamantanes to M2WT compared to negligible or weak binding to M2S31N. This is due to reshaping of the M2 pore when N31 is present, which, in contrast to wild-type (WT), leads (A) to the loss of the V27 pocket for the adamantyl cage and to a predominant orientation of the ligand's ammonium group toward the N-terminus and (B) to the lack of a helical kink upon ligand binding. The kink, which reduces the tilt of the C-terminal helical domain relative to the bilayer normal, includes the W41 primary gate for proton conductance and may prevent the gate from opening, representing an alternative view for how these drugs prevent proton conductance.


Subject(s)
Amantadine/pharmacology , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Protons , Viral Matrix Proteins/metabolism , Ligands , Spectrum Analysis , Viral Matrix Proteins/antagonists & inhibitors
9.
Bioorg Med Chem Lett ; 13(10): 1699-703, 2003 May 19.
Article in English | MEDLINE | ID: mdl-12729645

ABSTRACT

Synthetic spiro[pyrrolidine-2,2'-adamantanes] 2, 3, 11, 15, 12, 16, 18, 20 were evaluated in vitro and found to be active anti-influenza virus A compounds; the effect of the position of C-Me pyrrolidine ring substituent on antiviral activity was examined. Pyrrolidine 5-Me substitution appears to be optimal for H(2)N(2) strain activity. From the four different possible protonated conformers, experimental observation using NMR spectroscopy and molecular mechanics calculations demonstrated only a pair of conformers A(+)H (N-Me (ps-ax), C-Me (ps-eq)) and B(+)H ((N-Me ps-ax, C-Me ps-ax)) which can contribute to the biological activity of C-Me, N-Me protonated derivatives 15(+)H, 16(+)H and 20(+)H. The relative populations were calculated from NMR spectra. For compounds 15(+)H and 20(+)H conformer A(+)H (cis dimethyl orientation) is the major one whereas a similar population of conformers A(+)H and B(+)H (trans dimethyl orientation) was observed for compound 16(+)H. Since this new series is characterized by a lipophilic part, that is the pyrrolidine ring, in addition to adamantane, that can interact with influenza A M2 protein, an ultimate future goal would be the in vitro mapping of M2 lipophilic pocket.


Subject(s)
Adamantane/analogs & derivatives , Influenza A virus/drug effects , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Cell Line , Humans , Influenza, Human/drug therapy , Models, Molecular , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Pyrrolidines/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...