Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
J Evol Biol ; 36(7): 1050-1064, 2023 07.
Article in English | MEDLINE | ID: mdl-37428808

ABSTRACT

Many prey species change their antipredator defence during ontogeny, which may be connected to different potential predators over the life cycle of the prey. To test this hypothesis, we compared reactions of two predator taxa - spiders and birds - to larvae and adults of two invasive true bug species, Oxycarenus hyalinipennis and Oxycarenus lavaterae (Heteroptera: Oxycarenidae) with life-stage-specific chemical defence mechanisms. The reactions to larvae and adults of both true bug species strikingly differed between the two predator taxa. The spiders were deterred by the defences of adult bugs, but the larval defences were ineffective against them. By contrast, birds attacked the larvae considerably less often than the adult bugs. The results indicate a predator-specific ontogenetic change in defence effectiveness of both Oxycarenus species. The change in defence is likely linked to the life-stage-specific composition of secretions in both species: whereas secretions of larvae are dominated by unsaturated aldehydes, secretions of adults are rich in terpenoids, which probably serve dual function of defensive chemicals and pheromones. Our results highlight the variation in defence between different life stages and the importance of testing responses of different types of predators.


Subject(s)
Heteroptera , Animals , Heteroptera/physiology , Larva , Birds , Aldehydes , Predatory Behavior
2.
Cladistics ; 35(1): 42-66, 2019 Feb.
Article in English | MEDLINE | ID: mdl-34636080

ABSTRACT

The phylogeny of true bugs (Hemiptera: Heteroptera), one of the most diverse insect groups in terms of morphology and ecology, has been the focus of attention for decades with respect to several deep nodes between the suborders of Hemiptera and the infraorders of Heteroptera. Here, we assembled a phylogenomic data set of 53 taxa and 3102 orthologous genes to investigate the phylogeny of Hemiptera-Heteroptera, and both concatenation and coalescent methods were used. A binode-control approach for data filtering was introduced to reduce the incongruence between different genes, which can improve the performance of phylogenetic reconstruction. Both hypotheses (Coleorrhyncha + Heteroptera) and (Coleorrhyncha + Auchenorrhyncha) received support from various analyses, in which the former is more consistent with the morphological evidence. Based on a divergence time estimation performed on genes with a strong phylogenetic signal, the origin of true bugs was dated to 290-268 Ma in the Permian, the time in Earth's history with the highest concentration of atmospheric oxygen. During this time interval, at least 1007 apomorphic amino acids were retained in the common ancestor of the extant true bugs. These molecular apomorphies are located in 553 orthologous genes, which suggests the common ancestor of the extant true bugs may have experienced large-scale evolution at the genome level.

3.
Zookeys ; (796): 33-47, 2018.
Article in English | MEDLINE | ID: mdl-30487709

ABSTRACT

Xenicocephalustomhenryi sp. n. (Insecta: Hemiptera: Heteroptera: Enicocephalomorpha: Enicocephalidae) is established for a single macropterous female from Ecuador. The enigmatic genus now includes three species known from only two Neotropical adults and an incomplete female specimen. The new species is described and illustrated, extensive comparative diagnoses for Xenicocephalus species are provided, and nomenclature, distribution, and biology of the genus are reviewed. The architecture of the raptorial forelegs of Xenicocephalus is unique among Enicocephalomorpha, and the genus is classified as subfamily incertae sedis.

4.
Thomson, Scott A; Pyle, Richard L; Ahyong, Shane T; Alonso-Zarazaga, Miguel; Ammirati, Joe; Araya, Juan Francisco; Ascher, John S; Audisio, Tracy Lynn; Azevedo-Santos, Valter M; Bailly, Nicolas; Baker, William J; Balke, Michael; Barclay, Maxwell V. L; Barrett, Russell L; Benine, Ricardo C; Bickerstaff, James R. M; Bouchard, Patrice; Bour, Roger; Bourgoin, Thierry; Boyko, Christopher B; Breure, Abraham S. H; Brothers, Denis J; Byng, James W; Campbell, David; Ceriaco, Luis M. P; Cernak, Istvan; Cerretti, Pierfilippo; Chang, Chih-Han; Cho, Soowon; Copus, Joshua M; Costello, Mark J; Cseh, Andras; Csuzdi, Csaba; Culham, Alastair; D'Elia, Guillermo; d'Acoz, Cedric d'Udekem; Daneliya, Mikhail E; Dekker, Rene; Dickinson, Edward C; Dickinson, Timothy A; van Dijk, Peter Paul; Dijkstra, Klaas-Douwe B; Dima, Balint; Dmitriev, Dmitry A; Duistermaat, Leni; Dumbacher, John P; Eiserhardt, Wolf L; Ekrem, Torbjorn; Evenhuis, Neal L; Faille, Arnaud; Fernandez-Trianam, Jose L; Fiesler, Emile; Fishbein, Mark; Fordham, Barry G; Freitas, Andre V. L; Friol, Natalia R; Fritz, Uwe; Froslev, Tobias; Funk, Vicki A; Gaimari, Stephen D; Garbino, Guilherme S. T; Garraffoni, Andre R. S; Geml, Jozsef; Gill, Anthony C; Gray, Alan; Grazziotin, Felipe Gobbi; Greenslade, Penelope; Gutierrez, Eliecer E; Harvey, Mark S; Hazevoet, Cornelis J; He, Kai; He, Xiaolan; Helfer, Stephan; Helgen, Kristofer M; van Heteren, Anneke H; Garcia, Francisco Hita; Holstein, Norbert; Horvath, Margit K; Hovenkamp, Peter H; Hwang, Wei Song; Hyvonen, Jaakko; Islam, Melissa B; Iverson, John B; Ivie, Michael A; Jaafar, Zeehan; Jackson, Morgan D; Jayat, J. Pablo; Johnson, Norman F; Kaiser, Hinrich; Klitgard, Bente B; Knapp, Daniel G; Kojima, Jun-ichi; Koljalg, Urmas; Kontschan, Jeno; Krell, Frank-Thorsten; Krisai-Greilhuberm, Irmgard; Kullander, Sven; Latelle, Leonardo; Lattke, John E; Lencioni, Valeria; Lewis, Gwilym P; Lhano, Marcos G; Lujan, Nathan K; Luksenburg, Jolanda A; Mariaux, Jean; Marinho-Filho, Jader; Marshall, Christopher J; Mate, Jason F; McDonough, Molly M; Michel, Ellinor; Miranda, Vitor F. O; Mitroiulm, Mircea-Dan; Molinari, Jesus; Monks, Scott; Moore, Abigail J; Moratelli, Ricardo; Muranyi, David; Nakano, Takafumi; Nikolaeva, Svetlana; Noyes, John; Ohl, Michael; Oleas, Nora H; Orrell, Thomas; Pall-Gergele, Barna; Pape, Thomas; Papp, Viktor; Parenti, Lynne R; Patterson, David; Pavlinov, Igor Ya; Pine, Ronald H; Poczai, Peter; Prado, Jefferson; Prathapan, Divakaran; Rabeler, Richard K; Randall, John E; Rheindt, Frank E; Rhodin, Anders G. J; Rodriguez, Sara M; Rogers, D. Christopher; Roque, Fabio de O; Rowe, Kevin C; Ruedas, Luis A; Salazar-Bravo, Jorge; Salvador, Rodrigo B; Sangster, George; Sarmiento, Carlos E; Schigel, Dmitry S; Schmidt, Stefan; Schueler, Frederick W; Segers, Hendrik; Snow, Neil; Souza-Dias, Pedro G. B; Stals, Riaan; Stenroos, Soili; Stone, R. Douglas; Sturm, Charles F; Stys, Pavel; Teta, Pablo; Thomas, Daniel C; Timm, Robert M; Tindall, Brian J; Todd, Jonathan A; Triebel, Dagmar; Valdecasas, Antonio G; Vizzini, Alfredo; Vorontsova, Maria S; de Vos, Jurriaan M; Wagner, Philipp; Watling, Les; Weakley, Alan; Welter-Schultes, Francisco; Whitmore, Daniel; Wilding, Nicholas; Will, Kipling; Williams, Jason; Wilson, Karen; Winston, Judith E; Wuster, Wolfgang; Yanega, Douglas; Yeates, David K; Zaher, Hussam; Zhang, Guanyang; Zhang, Zhi-Qiang; Zhou, Hong-Zhang.
PLoS. Biol. ; 16(3): e2005075, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15045
5.
Anim Cogn ; 20(5): 855-866, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28639012

ABSTRACT

Social learning plays an important role in acquiring new foraging skills and food preferences in many bird species but its potential role in learning to avoid aposematic prey has never been studied. We tested the effect of social learning on the acquisition of avoidance of aposematic insect prey (firebug Pyrrhocoris apterus; Heteroptera) in juvenile, hand-reared great tits (Parus major). Behaviour towards aposematic prey was compared between two groups of birds: (1) the observers that were, prior to encounter with firebugs, allowed to watch the experienced conspecific demonstrator repeatedly refuse to attack the prey, and (2) the control birds that lacked this opportunity. Observing an experienced demonstrator was not sufficient for learning complete avoidance, because birds from both groups attacked at least the first firebug they had encountered in avoidance training. However, the opportunity to observe the avoidance behaviour of another bird significantly increased the rate of subsequent individual learning of observers in comparison with control birds. Social learning also decreased mortality of firebugs killed by the birds during the avoidance learning. Socially enhanced learning to avoid aposematic prey might be a mechanism important especially for naive juvenile birds learning from their parents, but it could also enhance learning in adults from their more experienced flock mates. Because social learning of avoidance may also lead to decreased mortality of aposematic prey, its effect should be taken into account in scenarios considering evolution and maintenance of prey warning signals.


Subject(s)
Avoidance Learning , Passeriformes/physiology , Predatory Behavior , Social Learning , Animals , Female , Heteroptera/physiology , Male
6.
PLoS One ; 11(12): e0168827, 2016.
Article in English | MEDLINE | ID: mdl-27997627

ABSTRACT

The true bugs (Hemiptera: Heteroptera) have evolved a system of well-developed scent glands that produce diverse and frequently strongly odorous compounds that act mainly as chemical protection against predators. A new method of non-lethal sampling with subsequent separation using gas chromatography with mass spectrometric detection was proposed for analysis of these volatile defensive secretions. Separation was performed on Rtx-200 column containing fluorinated polysiloxane stationary phase. Various mechanical irritation methods (ultrasonics, shaking, pressing bugs with plunger of syringe) were tested for secretion sampling with a special focus on non-lethal irritation. The preconcentration step was performed by sorption on solid phase microextraction (SPME) fibers with different polarity. For optimization of sampling procedure, Pyrrhocoris apterus was selected. The entire multi-parameter optimization procedure of secretion sampling was performed using response surface methodology. The irritation of bugs by pressing them with a plunger of syringe was shown to be the most suitable. The developed method was applied to analysis of secretions produced by adult males and females of Pyrrhocoris apterus, Pyrrhocoris tibialis and Scantius aegyptius (all Heteroptera: Pyrrhocoridae). The chemical composition of secretion, particularly that of alcohols, aldehydes and esters, is species-specific in all three pyrrhocorid species studied. The sexual dimorphism in occurrence of particular compounds is largely limited to alcohols and suggests their epigamic intraspecific function. The phenetic overall similarities in composition of secretion do not reflect either relationship of species or similarities in antipredatory color pattern. The similarities of secretions may be linked with antipredatory strategies. The proposed method requires only a few individuals which remain alive after the procedure. Thus secretions of a number of species including even the rare ones can be analyzed and broadly conceived comparative studies can be carried out.


Subject(s)
Heteroptera/metabolism , Volatile Organic Compounds/metabolism , Animals , Female , Gas Chromatography-Mass Spectrometry/methods , Male , Volatile Organic Compounds/analysis
7.
Behav Processes ; 131: 24-31, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27474371

ABSTRACT

European tits (Paridae) exhibit species-specific levels of initial wariness towards aposematic prey. This wariness may be caused by neophobia, dietary conservatism or innate bias against particular prey traits. We assessed the contribution of these three mechanisms to the behaviour of juvenile tits towards novel palatable prey and novel aposematic prey. We compared levels of initial wariness in great tits (Parus major), blue tits (Cyanistes caeruleus) and coal tits (Periparus ater), and tested how the wariness can be deactivated by experience with a palatable prey. One group of birds was pre-trained to attack familiar naturally coloured mealworms the other one, novel red-painted mealworms. Then all the birds were offered a novel palatable prey of different colour and shape: cricket (Acheta domestica) with blue sticker, and then a novel aposematic firebug (Pyrrhocoris apterus). The three species of tits differed in how the experience with a novel palatable prey affected their behaviour towards another novel prey. Great tits and coal tits from experienced groups significantly decreased their neophobia towards both palatable prey and aposematic prey while blue tits did not change their strongly neophobic reactions. The interspecific differences may be explained by differences in body size, geographic range, and habitat specialisation.


Subject(s)
Biological Mimicry/physiology , Predatory Behavior/physiology , Age Factors , Animals , Europe , Passeriformes , Species Specificity
8.
Cladistics ; 32(4): 390-405, 2016 Aug.
Article in English | MEDLINE | ID: mdl-34740299

ABSTRACT

Heteroptera are among the most diverse hemimetabolous insects. Seven infraorders have been recognized within this suborder of Hemiptera. Apart from the well-established sister-group relationship between Cimicomorpha and Pentatomomorpha (= Terheteroptera), the two terminal lineages, the relationships among the other five infraorders are still controversial, of which three (Gerromorpha, Nepomorpha and Leptopodomorpha) are intimately connected to aquatic environments. However, the various and often conflicting available phylogeny hypotheses do not offer a clear background for a connection between diversification and palaeoenvironments. In this study, a molecular data set representing 79 taxa and 10 149 homologous sites is used to infer the phylogenetic relationships within Heteroptera. Bayesian inference, maximum-likelihood and maximum parsimony analyses were employed. The results of phylogenetic inferences largely confirm the widely accepted phylogenetic context. Estimation of the divergence time based on the phylogenetic results revealed that Gerromorpha, Nepomorpha and Leptopodomorpha originated successively during the period from the Late Permian to Early Triassic (269-246 Ma). This timescale is consistent with the origin and radiation time of various aquatic holometabolans. Our results indicate that the aquatic and semi-aquatic true bugs evolved under environmental conditions of high air temperature and humidity in an evolutionary scenario similar to that of the aquatic holometabolans.

9.
Zootaxa ; 4012(2): 391-5, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26623865

ABSTRACT

New species Alienates thomasi sp. nov. Banar & Stys is described from Venezuela based on a single female. It is the first species recorded from South America, and is illustrated and compared with other Caribbean and Central American Alienates species.


Subject(s)
Heteroptera/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Female , Heteroptera/anatomy & histology , Heteroptera/growth & development , Male , Organ Size , Venezuela
10.
J Chromatogr A ; 1336: 94-100, 2014 Apr 04.
Article in English | MEDLINE | ID: mdl-24602308

ABSTRACT

A new capillary electrophoretic (CE) method has been developed for analysis of 10 selected derivatives of pterin that can occur in the integument (cuticle) of true bugs (Insecta: Hemiptera: Heteroptera), specifically L-sepiapterin, 7,8-dihydroxanthopterin, 6-biopterin, D-neopterin, pterin, isoxanthopterin, leucopterin, xanthopterin, erythropterin and pterin-6-carboxylic acid. Pterin derivatives are responsible for the characteristic warning coloration of some Heteroptera and other insects, signaling noxiousness or unpalatability and are used to discourage potential predators from attacking. Regression analysis defining the parameters significantly affecting CE separation was used to optimize the system (the background electrolyte (BGE) composition, pH value and applied voltage). The optimized separation conditions were as follows: BGE with composition 2 mmol L(-1) the disodium salt of ethylendiamintetraacetic acid, 100 mmol L(-1) tris(hydroxymethyl)aminomethane and 100 mmol L(-1) boric acid, pH 9.0, applied voltage 20 kV and UV detection at 250 nm. Under these conditions, all the 10 studied derivatives of pterin were baseline separated within 22 min. The optimized method was validated from the viewpoint of linearity (R(2)≥0.9980), accuracy (relative error ≤7.90%), precision (for repeatability RSD≤6.65%), detection limit (LOD in the range 0.04-0.99 µg mL(-1)) and limit of quantitation (LOQ in the range 0.13-3.30 µg mL(-1)). The developed method was used for identification and determination of the contents of pterin derivatives in adults of four species of Heteroptera (Eurydema ornata cream color morph, Scantius aegyptius, Pyrrhocoris apterus and Corizus hyoscyami) and their distribution in the individual species was determined.


Subject(s)
Electrophoresis, Capillary/methods , Heteroptera/chemistry , Pterins/analysis , Animals , Color , Pterins/isolation & purification
11.
Zootaxa ; 3905(3): 407-17, 2014 Jan 13.
Article in English | MEDLINE | ID: mdl-25661203

ABSTRACT

Two new species Proboscidopirates ericguilberti sp. nov. Banar & Stys and Proboscidopirates rugulosus sp. nov. Banar & Stys are described from central-east Madagascar. A list of Proboscidopirates species is given. Potential thelytoky of this endemic Madagascan genus, some of its generic and species-specific dignostic characters and its distribution relative to that of Oncylocotis Stål species are discussed. 


Subject(s)
Heteroptera/classification , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Ecosystem , Female , Heteroptera/anatomy & histology , Heteroptera/growth & development , Madagascar , Male , Organ Size
12.
Article in English | MEDLINE | ID: mdl-23727871

ABSTRACT

A new separation method involving hydrophilic interaction chromatography with tandem mass spectrometric detection has been developed for the analysis of pteridines, namely biopterin, isoxanthopterin, leucopterin, neopterin, xanthopterin and erythropterin in the cuticle of heteropteran insect species. Two columns, Atlantis HILIC Silica and ZIC(®)-HILIC were tested for the separation of these pteridines. The effect of organic modifier content, buffer type, concentration and pH in mobile phase on retention and separation behavior of the selected pteridines was studied and the separation mechanism was also investigated. The optimized conditions for the separation of pteridines consisted of ZIC(®)-HILIC column, mobile phase composed of acetonitrile/5mM ammonium acetate, pH 6.80, 85/15 (v/v), flow rate 0.5mL/min and column temperature 30°C. Detection was performed by tandem mass spectrometry operating in electrospray ionization with Agilent Jet Stream technology using the selected reaction monitoring mode. The optimized method provided a linearity range from 0.3 to 5000ng/mL (r>0.9975) and repeatability with relative standard deviation<8.09% for all the studied pteridines. The method was applied to the analysis of pteridines in the cuticle of larvae and three adult color forms of Graphosoma lineatum and one form of Graphosoma semipunctatum (Insecta: Hemiptera: Heteroptera: Pentatomidae). The analysis shows that different forms of Graphosoma species can be characterized by different distribution of individual pteridines, which affects the coloration of various forms. Only isoxanthopterin was found in all the five forms tested.


Subject(s)
Chromatography, Liquid/methods , Heteroptera/chemistry , Pteridines/analysis , Tandem Mass Spectrometry/methods , Animals , Hydrophobic and Hydrophilic Interactions , Limit of Detection , Pteridines/chemistry , Reproducibility of Results
13.
PLoS One ; 7(1): e29419, 2012.
Article in English | MEDLINE | ID: mdl-22235294

ABSTRACT

Many of true bugs are important insect pests to cultivated crops and some are important vectors of human diseases, but few cladistic analyses have addressed relationships among the seven infraorders of Heteroptera. The Enicocephalomorpha and Nepomorpha are consider the basal groups of Heteroptera, but the basal-most lineage remains unresolved. Here we report the mitochondrial genome of the unique-headed bug Stenopirates sp., the first mitochondrial genome sequenced from Enicocephalomorpha. The Stenopirates sp. mitochondrial genome is a typical circular DNA molecule of 15, 384 bp in length, and contains 37 genes and a large non-coding fragment. The gene order differs substantially from other known insect mitochondrial genomes, with rearrangements of both tRNA genes and protein-coding genes. The overall AT content (82.5%) of Stenopirates sp. is the highest among all the known heteropteran mitochondrial genomes. The strand bias is consistent with other true bugs with negative GC-skew and positive AT-skew for the J-strand. The heteropteran mitochondrial atp8 exhibits the highest evolutionary rate, whereas cox1 appears to have the lowest rate. Furthermore, a negative correlation was observed between the variation of nucleotide substitutions and the GC content of each protein-coding gene. A microsatellite was identified in the putative control region. Finally, phylogenetic reconstruction suggests that Enicocephalomorpha is the sister group to all the remaining Heteroptera.


Subject(s)
Gene Order/genetics , Genome, Mitochondrial/genetics , Hemiptera/genetics , Animals , Base Composition , Base Sequence , Codon/genetics , Codon/metabolism , Evolution, Molecular , Male , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , RNA, Ribosomal/genetics , RNA, Ribosomal/metabolism , RNA, Transfer/chemistry , RNA, Transfer/genetics
14.
Proc Biol Sci ; 277(1682): 723-8, 2010 Mar 07.
Article in English | MEDLINE | ID: mdl-19889698

ABSTRACT

Variation in reactions to aposematic prey is common among conspecific individuals of bird predators. It may result from different individual experience but it also exists among naive birds. This variation may possibly be explained by the effect of personality--a complex of correlated, heritable behavioural traits consistent across contexts. In the great tit (Parus major), two extreme personality types have been defined. 'Fast' explorers are bold, aggressive and routine-forming; 'slow' explorers are shy, non-aggressive and innovative. Influence of personality type on unlearned reaction to aposematic prey, rate of avoidance learning and memory were tested in naive, hand-reared great tits from two opposite lines selected for exploration (slow against fast). The birds were subjected to a sequence of trials in which they were offered aposematic adult firebugs (Pyrrhocoris apterus). Slow birds showed a greater degree of unlearned wariness and learned to avoid the firebugs faster than fast birds. Although birds of both personality types remembered their experience, slow birds were more cautious in the memory test. We conclude that not only different species but also populations of predators that differ in proportions of personality types may have different impacts on survival of aposematic insects under natural conditions.


Subject(s)
Avoidance Learning/physiology , Behavior, Animal/physiology , Heteroptera/growth & development , Passeriformes/classification , Passeriformes/physiology , Personality , Predatory Behavior/physiology , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...