Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Parkinsonism Relat Disord ; 120: 106016, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38325255

ABSTRACT

INTRODUCTION: A valid, reliable, accessible measurement for the early detection of cognitive decline in patients with Parkinson's disease (PD) is in urgent demand. The objective of the study is to assess the clinical utility of the MemTrax Memory Test in detecting cognitive impairment in patients with PD. METHODS: The MemTrax, a fast on-line cognitive screening tool based on continuous recognition task, and Montreal Cognitive Assessment (MoCA) were administered to 61 healthy controls (HC), 102 PD patients with normal cognition (PD-N), 74 PD patients with mild cognitive impairment (PD-MCI) and 52 PD patients with dementia (PD-D). The total percent correct (MTx- %C), average response time (MTx-RT), composite score (MTx-Cp) of MemTrax and the MoCA scores were comparatively analyzed. RESULTS: The MoCA scores were similar between HC and PD-N, however, MTx- %C and MTx-Cp were lower in PD-N than HC(p < 0.05). MTx- %C, MTx-Cp and the MoCA scores were significantly lower in PD-MCI versus PD-N and in PD-D versus PD-MCI (p ≤ 0.001), while MTx-RT was statistically longer in PD-D versus PD-MCI (p ≤ 0.001). For PD groups, the MemTrax performance correlated with the MoCA scores. To detect PD-MCI, the optimal MTx- %C and MTx-Cp cutoff were 75 % and 50.0, respectively. To detect PD-D, the optimal MTx- %C, MTx-RT and MTx-Cp cutoff were 69 %, 1.341s and 40.6, respectively. CONCLUSION: The MemTrax provides rapid, valid and reliable metrics for assessing cognition in PD patients which could be useful for identifying PD-MCI at early stage and monitoring cognitive function decline during the progression of disease.


Subject(s)
Cognitive Dysfunction , Parkinson Disease , Humans , Parkinson Disease/complications , Parkinson Disease/diagnosis , Neuropsychological Tests , Cognitive Dysfunction/diagnosis , Cognitive Dysfunction/etiology , Cognition , Mental Status and Dementia Tests
2.
NPJ Parkinsons Dis ; 10(1): 31, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38296953

ABSTRACT

Aquaporin-4 (AQP4) is essential for normal functioning of the brain's glymphatic system. Impaired glymphatic function is associated with neuroinflammation. Recent clinical evidence suggests the involvement of glymphatic dysfunction in LRRK2-associated Parkinson's disease (PD); however, the precise mechanism remains unclear. The pro-inflammatory cytokine interferon (IFN) γ interacts with LRRK2 to induce neuroinflammation. Therefore, we examined the AQP4-dependent glymphatic system's role in IFNγ-mediated neuroinflammation in LRRK2-associated PD. We found that LRRK2 interacts with and phosphorylates AQP4 in vitro and in vivo. AQP4 phosphorylation by LRRK2 R1441G induced AQP4 depolarization and disrupted glymphatic IFNγ clearance. Exogeneous IFNγ significantly increased astrocyte expression of IFNγ receptor, amplified AQP4 depolarization, and exacerbated neuroinflammation in R1441G transgenic mice. Conversely, inhibiting LRRK2 restored AQP4 polarity, improved glymphatic function, and reduced IFNγ-mediated neuroinflammation and dopaminergic neurodegeneration. Our findings establish a link between LRRK2-mediated AQP4 phosphorylation and IFNγ-mediated neuroinflammation in LRRK2-associated PD, guiding the development of LRRK2 targeting therapy.

3.
Mol Neurobiol ; 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38200351

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disease, with sporadic form being the predominant type. Neuroinflammation plays a critical role in accelerating pathogenic processes in AD. Mesenchymal stem cell (MSC)-derived small extracellular vesicles (MSC-sEVs) regulate inflammatory responses and show great promise for treating AD. Induced pluripotent stem cell (iPSC)-derived MSCs are similar to MSCs and exhibit low immunogenicity and heterogeneity, making them promising cell sources for clinical applications. This study examined the anti-inflammatory effects of MSC-sEVs in a streptozotocin-induced sporadic mouse model of AD (sAD). The intracisternal administration of iPSC-MSC-sEVs alleviated NLRP3/GSDMD-mediated neuroinflammation, decreased amyloid deposition and neuronal apoptosis, and mitigated cognitive dysfunction. Furthermore, it explored the role of miR-223-3p in the iPSC-MSC-sEVs-mediated anti-inflammatory effects in vitro. miR-223-3p directly targeted NLRP3, whereas inhibiting miR-223-3p almost completely reversed the suppression of NLRP3 by MSC-sEVs, suggesting that miR-223-3p may, at least partially, account for MSC-sEVs-mediated anti-inflammation. Results obtained suggest that intracisternal administration of iPSC-MSC-sEVs can reduce cognitive impairment by inhibiting NLRP3/GSDMD neuroinflammation in a sAD mouse model. Therefore, the present study provides a proof-of-principle for applying iPSC-MSC-sEVs to target neuroinflammation in sAD.

4.
Neurol Sci ; 45(5): 2047-2055, 2024 May.
Article in English | MEDLINE | ID: mdl-37973627

ABSTRACT

BACKGROUND: Huntington's disease (HD) is a rare progressive neurological disorder, and telemedicine has the potential to improve the quality of care for patients with HD. Deutetrabenazine (DTBZ) can reduce chorea symptoms in HD; however, there is limited experience with this medication in Asian countries. METHODS: Retrospective and prospective studies were employed to explore the feasibility and reliability of a video-based telemedicine system for HD patient care. Reliability was demonstrated through consistency between selected-item scores (SIS) and total motor scores (TMS) and the agreement of scores obtained from hospital and home videos. Finally, a single-centre real-world DTBZ management study was conducted based on the telemedicine system to explore the efficacy of DTBZ in patients with HD. RESULTS: There were 77 patients included in the retrospective study, and a strong correlation was found between SIS and TMS (r = 0.911, P < 0.0001), indicating good representativeness. There were 32 patients enrolled in the prospective study. The reliability was further confirmed, indicated by correlations between SIS and TMS (r = 0.964, P < 0.0001) and consistency of SIS derived from the in-person and virtual visits (r = 0.969, P < 0.0001). There were 17 patients included in the DTBZ study with a mean 1.41 (95% confidence interval, 0.37-2.46) improvement in chorea score and reported treatment success. CONCLUSIONS: A video-based telemedicine system is a feasible and reliable option for HD patient care. It may also be used for drug management as a supplementary tool for clinical visits.


Subject(s)
Chorea , Huntington Disease , Telemedicine , Tetrabenazine/analogs & derivatives , Humans , Huntington Disease/complications , Huntington Disease/drug therapy , Chorea/drug therapy , Prospective Studies , Retrospective Studies , Reproducibility of Results
5.
J Alzheimers Dis ; 94(3): 1093-1103, 2023.
Article in English | MEDLINE | ID: mdl-37355900

ABSTRACT

BACKGROUND: Accessible measurements for the early detection of mild cognitive impairment (MCI) due to Alzheimer's disease (AD) are urgently needed to address the increasing prevalence of AD. OBJECTIVE: To determine the benefits of a composite MemTrax Memory Test and AD-related blood biomarker assessment for the early detection of MCI-AD in non-specialty clinics. METHODS: The MemTrax Memory Test and Montreal Cognitive Assessment were administered to 99 healthy seniors with normal cognitive function and 101 patients with MCI-AD; clinical manifestation and peripheral blood samples were collected. We evaluated correlations between the MemTrax Memory Test and blood biomarkers using Spearman's rank correlation analyses and then built discrimination models using various machine learning approaches that combined the MemTrax Memory Test and blood biomarker results. The models' performances were assessed according to the areas under the receiver operating characteristic curve. RESULTS: The MemTrax Memory Test and Montreal Cognitive Assessment areas under the curve for differentiating patients with MCI-AD from the healthy controls were similar. The MemTrax Memory Test strongly correlated with phosphorylated tau 181 and amyloid-ß42/40. The area under the curve for the best composite MemTrax Memory Test and blood biomarker model was 0.975 (95% confidence interval: 0.950-0.999). CONCLUSION: Combining MemTrax Memory Test and blood biomarker results is a promising new technique for the early detection of MCI-AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Humans , Alzheimer Disease/diagnosis , Cognitive Dysfunction/psychology , tau Proteins , Biomarkers , Early Diagnosis , Amyloid beta-Peptides
7.
Stem Cells ; 38(2): 218-230, 2020 02.
Article in English | MEDLINE | ID: mdl-31648394

ABSTRACT

Huntington's disease (HD) is a neurodegenerative disorder caused by a mutation in the huntingtin (HTT) gene that results in the production of neurotoxic mutant HTT (mHTT) protein. Suppressing HTT production with antisense oligonucleotides (ASOs) is a promising treatment strategy for HD; however, the difficulty of delivering ASOs to deep brain structures is a major barrier for its clinical application. The glymphatic system of astrocytes involving aquaporin 4 (AQP-4) controls the entry of macromolecules from the cerebrospinal fluid into the brain. Mesenchymal stem cells (MSCs) target astrocytes to inhibit neuroinflammation. Here we examined the glymphatic distribution of ASO in the brain and the therapeutic potential of combining intravenously injection of mesenchymal stem cells (IV-MSC) and ASOs for the treatment of HD. Our results show that Cy3-labeled ASOs entered the brain parenchyma via the perivascular space following cisternal injection, but the brain distribution was significantly lower in AQP-4-/- as compared with wild-type mice. Downregulation of the AQP-4 M23 isoform was accompanied by decreased brain levels of ASOs in BACHD mice as well as an increase in astrogliosis and phosphorylation of nuclear factor κB (NF-κB) p65. IV-MSC treatment restored AQP-4 M23 expression, attenuated astrogliosis, and decreased NF-κB p65 phosphorylation; it also increased the brain distribution of ASOs and enhanced the suppression of mHTT in BACHD mice. These results suggest that modulating glymphatic activity using IV-MSC is a novel strategy for improving the potency of ASO in the treatment of HD.


Subject(s)
Aquaporin 4/metabolism , Huntington Disease/genetics , Mesenchymal Stem Cells/metabolism , Oligonucleotides, Antisense/genetics , Adult , Animals , Disease Models, Animal , Humans , Mice , Middle Aged
8.
Drug Des Devel Ther ; 13: 173-182, 2019.
Article in English | MEDLINE | ID: mdl-30643385

ABSTRACT

PURPOSE: Mild traumatic brain injury (mTBI), the most common type of TBI, can result in prolonged cognitive impairment, mood disorders, and behavioral problems. Reducing oxidative stress and inflammation can rescue the neurons from mTBI-induced cell death. Xyloketal B, a natural product from mangrove fungus, has shown good antioxidative and neuroprotective effects in several disease models. Here, we investigated the potential protection afforded by a xyloketal derivative, C53N, in a closed-skull mTBI model. MATERIALS AND METHODS: Skulls of mice were thinned to 20-30 µm thickness, following which they were subjected to a slight compression injury to induce mTBI. One hour after TBI, mice were intraperitoneally injected with C53N, which was solubilized in 0.5% dimethyl sulfoxide in saline. In vivo two-photon laser scanning microscopy was used to image cell death in injured parenchyma in each mouse over a 12-hour period (at 1, 3, 6, and 12 hours). Water content and oxidation index, together with pathological analysis of glial reactivity, were assessed at 24 hours to determine the effect of C53N on mTBI. RESULTS: Cell death, oxidative stress, and glial reactivity increased in mTBI mice compared with sham-injured mice. Treatment with 40 or 100 mg/kg C53N 1 hour after mTBI significantly attenuated oxidative stress and glial reactivity and reduced parenchymal cell death at the acute phase after mTBI. CONCLUSION: The present study highlights the therapeutic potential of the xyloketal derivative C53N for pharmacological intervention in mTBI.


Subject(s)
Brain Injuries, Traumatic/prevention & control , Neuroprotective Agents/pharmacology , Pyrans/pharmacology , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Cell Death/drug effects , Dose-Response Relationship, Drug , Glutathione/analysis , Glutathione/metabolism , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/chemistry , Oxidative Stress/drug effects , Pyrans/administration & dosage , Pyrans/chemistry , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism
9.
Front Neurosci ; 12: 782, 2018.
Article in English | MEDLINE | ID: mdl-30464741

ABSTRACT

Mutations in leucine-rich repeat kinase 2 (LRRK2) are common causes of familial Parkinson's disease (PD). Oxidative stress plays a key role in the pathogenesis of PD. Mutations in LRRK2 have been shown to increase susceptibility to oxidative stress. To explore mechanisms underlying susceptibility to oxidative stress in LRRK2 mutants, we generated stable Caenorhabditis elegans (C. elegans) strains in which human LRRK2 proteins including wild type LRRK2 (WT), G2019S LRRK2 (G2019S), and G2019S-D1994A kinase-dead LRRK2 (KD) were expressed in all neurons. Human 14-3-3 ß was injected into LRRK2 transgenic worms to allow co-expression of 14-3-3 ß and LRRK2 proteins. We found that G2019S transgenic worms had increased sensitivity to stress (heat and juglone treatment) and impaired stress-induced nuclear translocation of DAF-16. In addition, G2019S inhibited ftt2 (a 14-3-3 gene homolog in C. elegans) knockdown-associated nuclear translocation of DAF-16. Comparably, overexpression of human 14-3-3 ß could attenuate G2019S-associated toxicity in response to stress and rescued G2019S-mediated inhibition of sod-3 and dod-3 expression. Taken together, our study provides evidence suggesting that 14-3-3-associated inhibition of DAF-16 nuclear translocation could be a mechanism for G2019S LRRK2-induced oxidative stress and cellular toxicity. Our findings may give a hint that the potential of 14-3-3 proteins as neuroprotective targets in PD patients carrying LRRK2 mutations.

10.
Dement Geriatr Cogn Disord ; 45(3-4): 210-219, 2018.
Article in English | MEDLINE | ID: mdl-29886485

ABSTRACT

BACKGROUND: Several studies have found that bilingualism can delay the age of onset of Alz-heimer disease (AD). The interpretation of these findings is that switching between two languages can enhance cognitive reserve. However, some studies have provided inconsistent results. Diverse language pairs used by the bilinguals in different studies may contribute to the discrepancies. Cantonese and Mandarin are widely used in southern China, and regarded as bilingualism. The present study aims to determine if Cantonese/Mandarin bilingualism can delay the onset of AD. METHODS: The data of 129 patients diagnosed with probable AD, including 48 Cantonese monolinguals, 20 Mandarin monolinguals, and 61 Cantonese/Mandarin bilinguals were analyzed. RESULTS: Cantonese/Mandarin bilinguals were found to have an older age at AD onset, and older age at the first clinic visit than Mandarin monolinguals and Cantonese monolinguals. Both Mandarin monolinguals and Cantonese/Mandarin bilinguals had a higher education level and higher occupation status than the Cantonese monolinguals. Mandarin monolinguals did not differ from Cantonese/Mandarin bilinguals significantly in years of education and occupation status. The multiple linear regression analyses indicated that Cantonese/Mandarin bilingualism can delay the onset of AD independently. CONCLUSION: Constantly speaking both Cantonese and Mandarin from at least early adulthood can delay the onset of AD.


Subject(s)
Alzheimer Disease , Cognitive Reserve , Multilingualism , Age of Onset , Aged , Alzheimer Disease/epidemiology , Alzheimer Disease/psychology , China/epidemiology , Female , Humans , Male , Middle Aged , Protective Factors
11.
Eur J Pharmacol ; 819: 58-67, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29183837

ABSTRACT

Previous studies have shown that melatonin can protect cells against rotenone-induced cell death. Yet, the mechanism involved in this protection requires further research. In this study, we aimed to further investigate the effects of melatonin on inhibiting rotenone-induced SH-SY5Y cells and the underlying molecular mechanisms. Human neuroblastoma SH-SY5Y cells were treated with 0.3 or 1µM rotenone for 6 or 12h. Cell viability was measured with an MTS assay, the mitochondrial membrane potential was determined with a Rhodamine 123 staining assay, and the protein expression levels of the markers of autophagy, including cytochrome C release (Cyt C), light chain 3B (LC3 B) and Dynamin-Related Protein 1 (Drp1) were analyzed by western blotting. The co-localization of Drp1 and TOM20 proteins in the mitochondria of SH-SY5Y cells was measured by immunofluorescence coupled with confocal microscopy and the overexpression of the Drp1 gene was then conducted. The viability and expression levels of Cyt C and LC3 B in rotenone and melatonin + rotenone-treated Drp1-overexpressed SH-SY5Y cells were analyzed with MTS and western blotting, respectively. We found that rotenone effectively induced SH-SY5Y cell death by causing mitochondrial dysfunction and increasing Cyt C expression. Drp1 expression and its regulation of mitochondrial translocation mediated the rotenone-induced cell death and melatonin inhibited this process. Overexpression of Drp1 protein attenuated melatonin's inhibition of rotenone-induced SH-SY5Y cell death. In conclusion, melatonin effectively inhibits rotenone-induced neuronal cell death via the regulation of Drp1 expression.


Subject(s)
Down-Regulation/drug effects , GTP Phosphohydrolases/metabolism , Melatonin/pharmacology , Microtubule-Associated Proteins/metabolism , Mitochondrial Proteins/metabolism , Rotenone/antagonists & inhibitors , Rotenone/pharmacology , Cell Death/drug effects , Cell Line, Tumor , Cytochromes c/metabolism , Cytoprotection/drug effects , Dose-Response Relationship, Drug , Dynamins , GTP Phosphohydrolases/genetics , Humans , Microtubule-Associated Proteins/genetics , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Neurons/cytology , Neurons/drug effects , Protein Transport/drug effects
12.
Mar Drugs ; 13(9): 5593-605, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26343688

ABSTRACT

Micrometam C is a core of novel marine compound isolated from the mangrove associates Micromelum falcatum. In this study, we investigated the protective effects of micrometam C in inflammation models in the transgenic zebrafish line Tg (corola: eGFP) and RAW264.7 macrophages. We found that micrometam C significantly suppressed the migration of immune cells in tail-cutting-induced inflammation in transgenic zebrafish and reduced lipopolysaccharide (LPS)-induced reactive oxygen species (ROS) in both zebrafish and macrophages. In addition, micrometam C also restored LPS-induced reduction of endogenous antioxidants, such as catalase (CAT), glutathione (GSH) and superoxide dismutase (SOD). The protective effects of micrometam C were in parallel to its inhibition of NADPH oxidase and nuclear factor-kappa-binding (NF-κB) activity. Thus, the present results demonstrate that micrometam C protects against LPS-induced inflammation possibly through its antioxidant property.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Coumaric Acids/chemistry , Coumaric Acids/pharmacology , Inflammation/drug therapy , Animals , Antioxidants , Cell Line , Gene Expression Regulation/drug effects , Lipopolysaccharides/toxicity , Macrophages , Mice , Molecular Structure , NADPH Oxidases/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Respiratory Burst , Tail , Zebrafish
13.
Neurosci Lett ; 598: 29-35, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-25957560

ABSTRACT

Micro traumatic brain injury (TBI) is the most common type of brain injury, but the mechanisms underlying it are poorly understood. Aquaporin-4 (AQP4) is a water channel expressed in astrocyte end-feet, which plays an important role in brain edema. However, little is known about the role of AQP4 in micro TBI. Here, we examined the role of AQP4 in the pathogenesis of micro TBI in a closed-skull brain injury model, using two-photon microscopy. Our results indicate that AQP4 deletion reduced cell death, water content, astrocyte swelling and lesion volume during the acute stage of micro TBI. Our data revealed that astrocyte swelling is a decisive pathophysiological factor in the acute phase of this form of micro brain injury. Thus, treatments that inhibit AQP4 could be used as a neuroprotective strategy for micro TBI.


Subject(s)
Aquaporin 4/metabolism , Brain Injuries/metabolism , Head Injuries, Closed/metabolism , Acute Disease , Animals , Aquaporin 4/genetics , Astrocytes/pathology , Blood-Brain Barrier/metabolism , Brain Edema/metabolism , Brain Edema/pathology , Brain Injuries/pathology , Cell Death , Cell Size , Head Injuries, Closed/pathology , Male , Mice, Knockout , Microglia/pathology
14.
BMC Complement Altern Med ; 15: 137, 2015 Apr 29.
Article in English | MEDLINE | ID: mdl-25925762

ABSTRACT

BACKGROUND: Parkinson's disease (PD) is the second most common neurodegenerative disease, affecting 2% of the population aged over 65 years old. Mitochondrial defects and oxidative stress actively participate in degeneration of dopaminergic (DA) neurons in PD. Paeonolum, a main component isolated from Moutan cortex, has potent antioxidant ability. Here, we have examined the effects of paeonolum against MPP(+)-induced neurotoxicity in zebrafish and PC12 cells. METHODS: The overall viability and neurodegeneration of DA neurons was assessed in ETvmat2:green fluorescent protein (GFP) transgenic zebrafish, in which most monoaminergic neurons are labeled by GFP. Damage to PC12 cells was measured using a cell viability assay and assessment of nuclear morphology. Intracellular reactive oxygen species (ROS) and the level of total GSH were assessed. The mitochondrial cell death pathway including mitochondrial membrane potential, cytochrome C release and caspase-3 activity were also examined in PC12 cells. RESULTS: Paeonolum protected against MPP(+)-induced DA neurodegeneration and locomotor dysfunction in zebrafish in a concentration-dependent manner. Similar neuroprotection was replicated in the PC12 cellular model of MPP(+) toxicity. Paeonolum attenuated MPP(+)-induced intracellular ROS accumulation and restored the level of total GSH in PC12 cells. Furthermore, paeonolum significantly inhibited the mitochondrial cell death pathway induced by MPP(+). CONCLUSIONS: Collectively, the present study demonstrates that paeonolum protects zebrafish and PC12 cells against MPP(+)-induced neurotoxicity.


Subject(s)
Antioxidants/therapeutic use , Dopaminergic Neurons/drug effects , Neuroprotective Agents/therapeutic use , Paeonia/chemistry , Parkinson Disease/prevention & control , Phytotherapy , Plant Extracts/therapeutic use , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/adverse effects , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Caspase 3/metabolism , Cell Death/drug effects , Cytochromes c/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Humans , MPTP Poisoning/metabolism , MPTP Poisoning/prevention & control , Membrane Potential, Mitochondrial/drug effects , Mitochondria/drug effects , Mitochondria/metabolism , Neuroprotective Agents/pharmacology , Neurotoxins/adverse effects , Oxidative Stress/drug effects , PC12 Cells , Parkinson Disease/metabolism , Plant Extracts/pharmacology , Rats , Reactive Oxygen Species/metabolism , Zebrafish
15.
Mar Drugs ; 10(6): 1307-1320, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22822374

ABSTRACT

Cyclotripeptide X-13 is a core of novel marine compound xyloallenoide A isolated from mangrove fungus Xylaria sp. (no. 2508). We found that X-13 dose-dependently induced angiogenesis in zebrafish embryos and in human endothelial cells, which was accompanied by increased phosphorylation of eNOS and Akt and NO release. Inhibition of PI3K/Akt/eNOS by LY294002 or L-NAME suppressed X-13-induced angiogenesis. The present work demonstrates that X-13 promotes angiogenesis via PI3K/Akt/eNOS pathways.


Subject(s)
Angiogenesis Inducing Agents/pharmacology , Aquatic Organisms/chemistry , Neovascularization, Physiologic/drug effects , Nitric Oxide Synthase Type III/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Angiogenesis Inducing Agents/chemical synthesis , Angiogenesis Inducing Agents/chemistry , Angiogenesis Inducing Agents/isolation & purification , Animals , Biological Products/chemical synthesis , Biological Products/chemistry , Biological Products/isolation & purification , Biological Products/pharmacology , Cell Line , Chromones/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Fungi/chemistry , Human Umbilical Vein Endothelial Cells , Humans , Morpholines/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide/metabolism , Nitric Oxide Synthase Type III/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Zebrafish/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...