Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(51): 59175-59188, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38095444

ABSTRACT

Generating lethal reactive oxygen species (ROS) within tumors by nanocatalytic medicines is an advanced strategy for tumor-specific therapy in recent years. Nevertheless, the low yield of ROS restrains its therapeutic efficiency. Herein, a dual-catalytic nanomedicine based on tumor microenvironment (TME)-responsive liposomal nanosystem co-delivering CuO2 and dihydroartemisinin (DHA) (LIPSe@CuO2&DHA) is developed to boost ROS generation against tumor. The liposomal nanosystem can degrade in the ROS-overexpressed TME and liberate CuO2 and DHA to initiate Cu-based dual-catalytic ROS generation. Serving as generators of H2O2 and Cu2+, CuO2 can self-produce plenty of toxic hydroxyl radicals via Fenton-like reaction in the acidic TME. Meanwhile, the released Cu2+ can catalyze DHA to generate cytotoxic C-centered radicals. Together, the self-supplied H2O2 and Cu-based dual-catalytic reaction greatly increase the intratumoral level of lethal ROS. Importantly, Cu2+ can decrease the GSH-mediated scavenging effect on the produced ROS via a redox reaction and undergo a Cu2+-to-Cu+ conversion to enhance the Fenton-like reaction, further guaranteeing the high efficiency of ROS generation. Resultantly, LIPSe@CuO2&DHA induces remarkable cancer cell death and tumor growth inhibition, which may present a promising nanocatalytic medicine for cancer therapy.


Subject(s)
Nanomedicine , Neoplasms , Humans , Reactive Oxygen Species/metabolism , Cell Line, Tumor , Hydrogen Peroxide/pharmacology , Neoplasms/pathology , Phototherapy , Tumor Microenvironment , Glutathione/pharmacology
2.
Carbohydr Polym ; 288: 119312, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35450617

ABSTRACT

Herein, cellulose nanofibril (CNF) with various carboxyl amounts were prepared via regulating its oxidation degree using TEMPO oxidation. The CNF dispersion was dropped onto the interdigital electrode to be capacitive humidity sensor by the subsequent vacuum freeze-drying. Pure CNF-7 (NaClO content of 7 mmol/g) humidity sensor involves in orderly porous structure, which displays better performance than other CNFs for its moderate carboxyl content and dimension. As uniformly adding appropriate content of graphene oxide quantum dots (GOQD) with larger surface area and active sites, it can be attached on the CNF to construct a three-dimensional interconnected porous structure for their excellent aqueous dispersity as well as differences in morphology and size. Consequently, the CNF/GOQD sensor exhibits the sensitivity as high as 51,840.91 pF/% RH, short response time (30 s)/recovery time (11 s) and excellent reproducibility. The proposed method can provide effective guidance for the design of humidity sensors based on nanomaterials.


Subject(s)
Quantum Dots , Wood , Cellulose/chemistry , Graphite , Humidity , Reproducibility of Results , Wood/chemistry
3.
RSC Adv ; 11(3): 1543-1552, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-35424105

ABSTRACT

A kind of capacitive humidity sensor with high sensitivity constructed with nanofibrillated cellulose (NFC), graphene oxide (GO) and polydimethylsiloxane (PDMS) is presented in this work, via a simple ultrasonic dispersion and freeze drying technology. The NFC and GO with a strong adsorption for water molecules were used as a substrate for the promotion of capacitive response of the humidity sensor. Moreover, anhydrous ethanol was added to inhibit the generation of big cracks in the humidity sensor in the freeze drying process, so as to obtain a regular network porous structure, then providing a great deal of conduction channels and active sites for molecular water. Also, the addition of PDMS can effectively enhance the flexibility and stability of its porous structure. The results confirmed that the humidity sensor with 30 wt% GO showed an excellent humidity sensitivity (6576.41 pF/% RH), remarkable reproducibility, low humidity hysteresis characteristic in 11-97% relative humidity (RH) at 25 °C, and short response/recovery times (57 s/2 s). In addition, the presented sensor exhibited small relative deviation of the measured relative humidity value compared with the commercial hygrometer. The realization of the high sensitivity can be attributed to the theories about interaction of the hydrophilic group, proton transfer of water molecules and the three-dimensional network transport structure model. Therefore, the NFC/GO/PDMS humidity sensor finally realizes stable, reproducible and fast humidity sensing via an eco-friendly process, exhibiting promising potential for wide practical application.

SELECTION OF CITATIONS
SEARCH DETAIL
...