Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067452

ABSTRACT

A series of saccharide-modified thiadiazole sulfonamide derivatives has been designed and synthesized by the "tail approach" and evaluated for inhibitory activity against carbonic anhydrases II, IX, and XII. Most of the compounds showed high topological polar surface area (TPSA) values and excellent enzyme inhibitory activity. The impacts of some compounds on the viability of HT-29, MDA-MB-231, and MG-63 human cancer cell lines were examined under both normoxic and hypoxic conditions, and they showed certain inhibitory effects on cell viability. Moreover, it was found that the series of compounds had the ability to raise the pH of the tumor cell microenvironment. All the results proved that saccharide-modified thiadiazole sulfonamides have important research prospects for the development of CA IX inhibitors.


Subject(s)
Carbohydrates/pharmacology , Sulfonamides/chemical synthesis , Sulfonamides/pharmacology , Thiadiazoles/chemical synthesis , Thiadiazoles/pharmacology , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacology , Carbonic Anhydrases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , HT29 Cells , Humans , Molecular Docking Simulation , Tumor Microenvironment/drug effects
2.
Carbohydr Res ; 503: 108311, 2021 May.
Article in English | MEDLINE | ID: mdl-33866267

ABSTRACT

A series of oleanolic acid derivatives bearing acetyl-substituted l-arabinose moiety has been synthesized and screened in vitro for cytotoxicity against ten cancer cell lines and four normal cell lines. The antiproliferative evaluation indicated that synthetic derivatives showed excellent selectivity, as they were toxic against only A431 cell line. Among them, the compound 6 possesses the best inhibitory activity. A series of pharmacology experiments showed that compound 6 significantly induced A431 cells apoptosis and cell cycle arrest, which could serve as a promising lead candidate for further study.


Subject(s)
Antineoplastic Agents/pharmacology , Arabinose/pharmacology , Oleanolic Acid/pharmacology , Saponins/pharmacology , Acetylation , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Arabinose/chemistry , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , Membrane Potential, Mitochondrial/drug effects , Molecular Conformation , Oleanolic Acid/chemical synthesis , Oleanolic Acid/chemistry , Saponins/chemical synthesis , Saponins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL