Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Res Sq ; 2024 May 17.
Article in English | MEDLINE | ID: mdl-38798660

ABSTRACT

Alzheimer's disease (AD) is a progressive form of dementia affecting almost 55 million people worldwide. It is characterized by the abnormal deposition of amyloid plaques and neurofibrillary tangles within the brain, leading to a pathological cascade of neuron degeneration and death as well as memory loss and cognitive decline. Amyloid beta (Aß) is an AD biomarker present in cerebrospinal fluid and blood serum and correlates with the presence of amyloid plaques and tau tangles in the brain. Measuring the levels of Aß can help with early diagnosis of AD, which is key for studying novel AD drugs and delaying the symptoms of dementia. However, this goal is difficult to achieve due to the low levels of AD biomarkers in biofluids. Here we demonstrate for the first time the use of FLOWER (frequency locked optical whispering evanescent resonator) for quantifying the levels of post-mortem cerebrospinal fluid (CSF) Aß42 in clinicopathologically classified control, mild cognitive impairment (MCI), and AD participants. FLOWER is capable of measuring CSF Aß42 (area under curve, AUC = 0.92) with higher diagnostic performance than standard ELISA (AUC = 0.82) and was also able to distinguish between control and MCI samples. Our results demonstrate the capability of FLOWER for screening CSF samples for early diagnosis of Alzheimer's pathology.

2.
Light Sci Appl ; 13(1): 75, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38490984

ABSTRACT

Whispering gallery mode (WGM) microtoroid resonators are one of the most sensitive biochemical sensors in existence, capable of detecting single molecules. The main barrier for translating these devices out of the laboratory is that light is evanescently coupled into these devices though a tapered optical fiber. This hinders translation of these devices as the taper is fragile, suffers from mechanical vibration, and requires precise positioning. Here, we eliminate the need for an optical fiber by coupling light into and out from a toroid via free-space coupling and monitoring the scattered resonant light. A single long working distance objective lens combined with a digital micromirror device (DMD) was used for light injection, scattered light collection, and imaging. We obtain Q-factors as high as 1.6 × 10 8 with this approach. Electromagnetically induced transparency (EIT)-like and Fano resonances were observed in a single cavity due to indirect coupling in free space. This enables improved sensing sensitivity. The large effective coupling area (~10 µm in diameter for numerical aperture = 0.14) removes the need for precise positioning. Sensing performance was verified by combining the system with the frequency locked whispering evanescent resonator (FLOWER) approach to perform temperature sensing experiments. A thermal nonlinear optical effect was examined by tracking the resonance through FLOWER while adjusting the input power. We believe that this work will be a foundation for expanding the implementation of WGM microtoroid resonators to real-world applications.

3.
ACS Pharmacol Transl Sci ; 7(2): 348-362, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38357278

ABSTRACT

As the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus mutates, finding effective drugs becomes more challenging. In this study, we use ultrasensitive frequency locked microtoroid optical resonators in combination with in silico screening to search for COVID-19 drugs that can stop the virus from attaching to the human angiotensin-converting enzyme 2 (hACE2) receptor in the lungs. We found 29 promising candidates that could block the binding site and selected four of them that were likely to bind very strongly. We tested three of these candidates using frequency locked optical whispering evanescent resonator (FLOWER), a label-free sensing method based on microtoroid resonators. FLOWER has previously been used for sensing single macromolecules. Here we show, for the first time, that FLOWER can provide accurate binding affinities and sense the inhibition effect of small molecule drug candidates without labels, which can be prohibitive in drug discovery. One of the candidates, methotrexate, showed binding to the spike protein 1.8 million times greater than that to the receptor binding domain (RBD) binding to hACE2, making it difficult for the virus to enter cells. We tested methotrexate against different variants of the SARS-CoV-2 virus and found that it is effective against all four of the tested variants. People taking methotrexate for other conditions have also shown protection against the original SARS-CoV-2 virus. Normally, it is assumed that methotrexate inhibits the replication and release of the virus. However, our findings suggest that it may also block the virus from entering cells. These studies additionally demonstrate the possibility of extracting candidate ligands from large databases, followed by direct receptor-ligand binding experiments on the best candidates using microtoroid resonators, thus creating a workflow that enables the rapid discovery of new drug candidates for a variety of applications.

4.
ACS Appl Mater Interfaces ; 16(4): 5120-5128, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38240231

ABSTRACT

The nitric oxide radical plays pivotal roles in physiological as well as atmospheric contexts. Although the detection of dissolved nitric oxide in vivo has been widely explored, highly sensitive (i.e., low part-per-trillion level), selective, and humidity-resistant detection of gaseous nitric oxide in air remains challenging. In the field, humidity can have dramatic effects on the accuracy and selectivity of gas sensors, confounding data, and leading to overestimation of gas concentration. Highly selective and humidity-resistant gaseous NO sensors based on laser-induced graphene were recently reported, displaying a limit of detection (LOD) of 8.3 ppb. Although highly sensitive (LOD = 590 ppq) single-wall carbon nanotube NO sensors have been reported, these sensors lack selectivity and humidity resistance. In this report, we disclose a highly sensitive (LOD = 2.34 ppt), selective, and humidity-resistant nitric oxide sensor based on a whispering-gallery mode microtoroid optical resonator. Excellent analyte selectivity was enabled via novel ferrocene-containing polymeric coatings synthesized via reversible addition-fragmentation chain-transfer polymerization. Utilizing a frequency locked optical whispering evanescent resonator system, the microtoroid's real-time resonance frequency shift response to nitric oxide was tracked with subfemtometer resolution. The lowest concentration experimentally detected was 6.4 ppt, which is the lowest reported to date. Additionally, the performance of the sensor remained consistent across different humidity environments. Lastly, the impact of the chemical composition and molecular weight of the novel ferrocene-containing polymeric coatings on sensing performance was evaluated. We anticipate that our results will have impact on a wide variety of fields where NO sensing is important such as medical diagnostics through exhaled breath, determination of planetary habitability, climate change, air quality monitoring, and treating cardiovascular and neurological disorders.

5.
bioRxiv ; 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37786702

ABSTRACT

Binding events to elements of the cell membrane act as receptors which regulate cellular function and communication and are the targets of many small molecule drug discovery efforts for agonists and antagonists. Conventional techniques to probe these interactions generally require labels and large amounts of receptor to achieve satisfactory sensitivity. Whispering gallery mode microtoroid optical resonators have demonstrated sensitivity to detect single-molecule binding events. Here, we demonstrate the use of frequency-locked optical microtoroids for characterization of membrane interactions in vitro at zeptomolar concentrations using a supported biomimetic membrane. Arrays of microtoroids were produced using photolithography and subsequently modified with a biomimetic membrane, providing high quality (Q) factors (>106) in aqueous environments. Fluorescent recovery after photobleaching (FRAP) experiments confirmed the retained fluidity of the microtoroid supported-lipid membrane with a diffusion coefficient of 3.38±0.26 µm2⋅s-1. Utilizing this frequency-locked membrane-on-a-chip model combined with auto-balanced detection and non-linear post-processing techniques, we demonstrate zeptomolar detection levels The binding of Cholera Toxin B- monosialotetrahexosyl ganglioside (GM1) was monitored in real-time, with an apparent equilibrium dissociation constant kd=1.53 nM. The measured affiny of the agonist dynorphin A 1-13 to the κ-opioid receptor revealed a kd=3.1 nM using the same approach. Radioligand binding competition with dynorphin A 1-13 revealed a kd in agreement (1.1 nM) with the unlabeled method. The biosensing platform reported herein provides a highly sensitive real-time characterization of membrane embedded protein binding kinetics, that is rapid and label-free, for toxin screening and drug discovery, among other applications.

6.
Mol Cell Proteomics ; 22(7): 100590, 2023 07.
Article in English | MEDLINE | ID: mdl-37301378

ABSTRACT

Ovarian cancer, a leading cause of cancer-related deaths among women, has been notoriously difficult to screen for and diagnose early, as early detection significantly improves survival. Researchers and clinicians seek routinely usable and noninvasive screening methods; however, available methods (i.e., biomarker screening) lack desirable sensitivity/specificity. The most fatal form, high-grade serous ovarian cancer, often originate in the fallopian tube; therefore, sampling from the vaginal environment provides more proximal sources for tumor detection. To address these shortcomings and leverage proximal sampling, we developed an untargeted mass spectrometry microprotein profiling method and identified cystatin A, which was validated in an animal model. To overcome the limits of detection inherent to mass spectrometry, we demonstrated that cystatin A is present at 100 pM concentrations using a label-free microtoroid resonator and translated our workflow to patient-derived clinical samples, highlighting the potential utility of early stage detection where biomarker levels would be low.


Subject(s)
Early Detection of Cancer , Ovarian Neoplasms , Humans , Animals , Female , Cystatin A , Ovarian Neoplasms/metabolism , Micropeptides
7.
JPhys Photonics ; 5(1): 014001, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36698962

ABSTRACT

Generating a coherent optical frequency comb at an arbitrary wavelength is important for fields such as precision spectroscopy and optical communications. Dark solitons which are coherent states of optical frequency combs in normal dispersion microresonators can extend the operating wavelength range of these combs. While the existence and dynamics of dark solitons has been examined extensively, requirements for the modal interaction for accessing the soliton state in the presence of a strong Raman interaction at near visible wavelengths has been less explored. Here, analysis on the parametric and Raman gain in a silica microresonator is performed, revealing that four-wave mixing parametric gain which can be created by a modal-interaction-aided additional frequency shift is able to exceed the Raman gain. The existence range of the dark soliton is analyzed as a function of pump power and detuning for given modal coupling conditions. We anticipate these results will benefit fields requiring optical frequency combs with high efficiency and selectable wavelength such as biosensing applications using silica microcavities that have a strong Raman gain in the normal dispersion regime.

8.
ACS Appl Mater Interfaces ; 14(37): 42430-42440, 2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36049126

ABSTRACT

Rapid detection of toxic and hazardous gases at trace concentrations plays a vital role in industrial, battlefield, and laboratory scenarios. Of interest are both sensitive as well as highly selective sensors. Whispering-gallery mode (WGM) microresonator-based biochemical sensors are among the most sensitive sensors in existence due to their long photon confinement times. One main concern with these devices, however, is their selectivity toward specific classes of target analytes. Here, we employ frequency locked WGM microtoroid optical resonators covalently modified with various polymer coatings to selectively detect the chemical warfare agent surrogate diisopropyl methylphosphonate (DIMP) as well as the toxic industrial chemicals formaldehyde and ammonia at parts-per-trillion concentrations (304, 434, and 117 ppt, respectively). This is 1-2 orders of magnitude better than previously reported, depending on the target, except for pristine graphene and pristine carbon nanotube sensors, which demonstrate similar detection levels but in vacuum and without selectivity. Selective polymer coatings include polyethylene glycol for DIMP sensing, accessed by the modification of commercially available materials, and 3-(triethoxysilyl) propyl-terminated polyvinyl acetate (PVAc) for ammonia sensing. Notably, we developed for the first time an efficient one-pot procedure to access 3-(triethoxysilyl) propyl-terminated PVAc that utilizes cobalt-mediated living radical polymerization and a nitroxyl polymer-terminating agent. Alkaline hydrolysis of PVAc coatings to form polyvinyl alcohol coatings directly bound to the microtoroid proved to be reliable and reproducible, leading to WGM sensors capable of the rapid and selective detection of formaldehyde vapors. The selectivity of these three polymer coatings as sensing media was predicted, in part, based on their functional group content and known reactivity patterns with the target analytes. Furthermore, we demonstrate that microtoroids coated with a mixture of polymers can serve as an all-in-one sensor that can detect multiple agents. We anticipate that our results will facilitate rapid early detection of chemical agents, as well as their surrogates and precursors.

9.
Opt Express ; 30(6): 8690-8699, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299315

ABSTRACT

The ability to detect and identify molecules at high sensitivity without the use of labels or capture agents is important for medical diagnostics, threat identification, environmental monitoring, and basic science. Microtoroid optical resonators, when combined with noise reduction techniques, have been shown capable of label-free single molecule detection; however, they still require a capture agent and prior knowledge of the target molecule. Optical frequency combs can potentially provide high precision spectroscopic information on molecules within the evanescent field of the microresonator; however, this has not yet been demonstrated in air or aqueous biological sensing. For aqueous solutions in particular, impediments include coupling and thermal instabilities, reduced Q factor, and changes to the mode spectrum. Here we overcome a key challenge toward single-molecule spectroscopy using optical microresonators: the generation of a frequency comb at visible to near-IR wavelengths when immersed in either air or aqueous solution. The required dispersion is achieved via intermodal coupling, which we show is attainable using larger microtoroids, but with the same shape and material that has previously been shown ideal for ultra-high sensitivity biosensing. We believe that the continuous evolution of this platform will allow us in the future to simultaneously detect and identify single molecules in both gas and liquid at any wavelength without the use of labels.

10.
ACS Sens ; 6(7): 2700-2708, 2021 07 23.
Article in English | MEDLINE | ID: mdl-34078073

ABSTRACT

Sensitive and rapid biosensors are of critical importance for a variety of applications including infectious disease detection and monitoring as well as medical diagnostics and drug discovery. Whispering gallery mode microtoroid optical resonators are among the most sensitive biochemical sensors in existence. When combined with frequency-locking and data-processing techniques, these sensors have been shown to be capable of single-molecule detection in under 30 s. The sensitivity of these sensors is affected by how a concentration of analyte molecules is transported to the surface of the sensors and the average time it takes the molecules to bind at that concentration. Currently, one question in the field is that at these low concentrations, how these microsensors achieve such rapid response times. Here, we reconcile theory and experiment and demonstrate through flow visualization experiments and finite-element simulations that the total analyte arrival and binding time can be on the order of seconds. This fast response time provides an advantage over nanoscale sensors such as nanowires or nanorods. We anticipate that these results can help us to control, with confidence, when and how many molecules bind to these sensors, thus enabling the building of faster and more sensitive sensors.


Subject(s)
Biosensing Techniques , Nanotubes
11.
Laser Photon Rev ; 15(1)2021 Jan.
Article in English | MEDLINE | ID: mdl-35360260

ABSTRACT

The recent development of sophisticated techniques capable of detecting extremely low concentrations of circulating tumor biomarkers in accessible body fluids, such as blood or urine, could contribute to a paradigm shift in cancer diagnosis and treatment. By applying such techniques, clinicians can carry out liquid biopsies, providing information on tumor presence, evolution, and response to therapy. The implementation of biosensing platforms for liquid biopsies is particularly complex because this application domain demands high selectivity/specificity and challenging limit-of-detection (LoD) values. The interest in photonics as an enabling technology for liquid biopsies is growing owing to the well-known advantages of photonic biosensors over competing technologies in terms of compactness, immunity to external disturbance, and ultra-high spatial resolution. Some encouraging experimental results in the field of photonic devices and systems for liquid biopsy have already been achieved by using fluorescent labels and label-free techniques and by exploiting super-resolution microscopy, surface plasmon resonance, surface-enhanced Raman scattering, and whispering gallery mode resonators. This paper critically reviews the current state-of-the-art, starting from the requirements imposed by the detection of the most common circulating biomarkers. Open research challenges are considered together with competing technologies, and the most promising paths of improvement are discussed for future applications.

12.
Sensors (Basel) ; 20(18)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971751

ABSTRACT

Whispering gallery mode resonators such as silica microtoroids can be used as sensitive biochemical sensors. One sensing modality is mode-splitting, where the binding of individual targets to the resonator breaks the degeneracy between clockwise and counter-clockwise resonant modes. Compared to other sensing modalities, mode-splitting is attractive because the signal shift is theoretically insensitive to the polar coordinate where the target binds. However, this theory relies on several assumptions, and previous experimental and numerical results have shown some discrepancies with analytical theory. More accurate numerical modeling techniques could help to elucidate the underlying physics, but efficient 3D electromagnetic finite-element method simulations of large microtoroid (diameter ~90 µm) and their resonance features have previously been intractable. In addition, applications of mode-splitting often involve bacteria or viruses, which are too large to be accurately described by the existing analytical dipole approximation theory. A numerical simulation approach could accurately explain mode splitting induced by these larger particles. Here, we simulate mode-splitting in a large microtoroid using a beam envelope method with periodic boundary conditions in a wedge-shaped domain. We show that particle sizing is accurate to within 11% for radii a<λ/7, where the dipole approximation is valid. Polarizability calculations need only be based on the background media and need not consider the microtoroid material. This modeling approach can be applied to other sizes and shapes of microresonators in the future.

13.
Anal Chem ; 91(18): 11872-11878, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31415150

ABSTRACT

Clean sport competition is of significant concern to many governments and sporting organizations. Highly sensitive and rapid sensors are needed to improve the detection of performance enhancing drugs in sports as athletes take diuretics to dilute the concentration of drugs in their urine and microdose under the detectable limits of current sensors. Here we demonstrate, using frequency locked microtoroid optical resonators, a 3 orders of magnitude improvement in detection limit over the current gold standard, mass spectrometry, for the common performance enhancing drug, human chorionic gonadotropin (hCG). hCG, also known as the pregnancy hormone, was detected both in simulated urine and in the urine of pregnant donors at a concentration of 1 and 3 femtomolar, respectively. We anticipate that the sensitivity provided by frequency locked optical microcavities can enable a new standard in antidoping research.


Subject(s)
Chorionic Gonadotropin/urine , Optics and Photonics/methods , Doping in Sports , Equipment Design , Female , Humans , Limit of Detection , Optics and Photonics/instrumentation , Pregnancy , Sensitivity and Specificity , Temperature
14.
Light Sci Appl ; 7: 3, 2018.
Article in English | MEDLINE | ID: mdl-30839644
15.
Sensors (Basel) ; 17(3)2017 Mar 08.
Article in English | MEDLINE | ID: mdl-28282881

ABSTRACT

Sensitive and rapid label-free biological and chemical sensors are needed for a wide variety of applications including early disease diagnosis and prognosis, the monitoring of food and water quality, as well as the detection of bacteria and viruses for public health concerns and chemical threat sensing. Whispering gallery mode optical resonator based sensing is a rapidly developing field due to the high sensitivity and speed of these devices as well as their label-free nature. Here, we describe the history of whispering gallery mode optical resonator sensors, the principles behind detection, the latest developments in the fields of biological and chemical sensing, current challenges toward widespread adoption of these devices, and an outlook for the future. In addition, we evaluate the performance capabilities of these sensors across three key parameters: sensitivity, selectivity, and speed.

16.
Light Sci Appl ; 5(1): e16001, 2016 Jan.
Article in English | MEDLINE | ID: mdl-30167109

ABSTRACT

Single-molecule detection is one of the fundamental challenges of modern biology. Such experiments often use labels that can be expensive, difficult to produce, and for small analytes, might perturb the molecular events being studied. Analyte size plays an important role in determining detectability. Here we use laser-frequency locking in the context of sensing to improve the signal-to-noise ratio of microtoroid optical resonators to the extent that single nanoparticles 2.5 nm in radius, and 15.5 kDa molecules are detected in aqueous solution, thereby bringing these detectors to the size limits needed for detecting the key macromolecules of the cell. Our results, covering several orders of magnitude of particle radius (100 nm to 2 nm), agree with the 'reactive' model prediction for the frequency shift of the resonator upon particle binding. This confirms that the main contribution of the frequency shift for the resonator upon particle binding is an increase in the effective path length due to part of the evanescent field coupling into the adsorbed particle. We anticipate that our results will enable many applications, including more sensitive medical diagnostics and fundamental studies of single receptor-ligand and protein-protein interactions in real time.

17.
J Vis Exp ; (106): e53180, 2015 Dec 29.
Article in English | MEDLINE | ID: mdl-26780214

ABSTRACT

Detecting small concentrations of molecules down to the single molecule limit has impact on areas such as early detection of disease, and fundamental studies on the behavior of molecules. Single molecule detection techniques commonly utilize labels such as fluorescent tags or quantum dots, however, labels are not always available, increase cost and complexity, and can perturb the events being studied. Optical resonators have emerged as a promising means to detect single molecules without the use of labels. Currently the smallest particle detected by a non-plasmonically-enhanced bare optical resonator system in solution is a 25 nm polystyrene sphere(1). We have developed a technique known as Frequency Locking Optical Whispering Evanescent Resonator (FLOWER) that can surpass this limit and achieve label-free single molecule detection in aqueous solution(2). As signal strength scales with particle volume, our work represents a > 100x improvement in the signal to noise ratio (SNR) over the current state of the art. Here the procedures behind FLOWER are presented in an effort to increase its usage in the field.


Subject(s)
Biosensing Techniques/methods , Molecular Imaging/methods , Biosensing Techniques/instrumentation , Interleukin-2/analysis , Interleukin-2/chemistry , Molecular Imaging/instrumentation , Quantum Dots , Solutions/chemistry
18.
Mol Cell Biomech ; 4(2): 87-104, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17937113

ABSTRACT

Interactions between the cell and the extracellular matrix regulate a variety of cellular properties and functions, including cellular rheology. In the present study of cellular adhesion, area was controlled by confining NIH 3T3 fibroblast cells to circular micropatterned islands of defined size. The shear moduli of cells adhering to islands of well defined geometry, as measured by magnetic microrheometry, was found to have a significantly lower variance than those of cells allowed to spread on unpatterned surfaces. We observe that the area of cellular adhesion influences shear modulus. Rheological measurements further indicate that cellular shear modulus is a biphasic function of cellular adhesion area with stiffness decreasing to a minimum value for intermediate areas of adhesion, and then increasing for cells on larger patterns. We propose a simple hypothesis: that the area of adhesion affects cellular rheological properties by regulating the structure of the actin cytoskeleton. To test this hypothesis, we quantified the volume fraction of polymerized actin in the cytosol by staining with fluorescent phalloidin and imaging using quantitative 3D microscopy. The polymerized actin volume fraction exhibited a similar biphasic dependence on adhesion area. Within the limits of our simplifying hypothesis, our experimental results permit an evaluation of the ability of established, micromechanical models to predict the cellular shear modulus based on polymerized actin volume fraction. We investigated the "tensegrity", "cellular-solids", and "biopolymer physics" models that have, respectively, a linear, quadratic, and 5/2 dependence on polymerized actin volume fraction. All three models predict that a biphasic trend in polymerized actin volume fraction as a function of adhesion area will result in a biphasic behavior in shear modulus. Our data favors a higher-order dependence on polymerized actin volume fraction. Increasingly better experimental agreement is observed for the tensegrity, the cellular solids, and the biopolymer models respectively. Alternatively if we postulate the existence of a critical actin volume fraction below which the shear modulus vanishes, the experimental data can be equivalently described by a model with an almost linear dependence on polymerized actin volume fraction; this observation supports a tensegrity model with a critical actin volume fraction.


Subject(s)
Cell Adhesion/physiology , Actins/physiology , Animals , Biomechanical Phenomena , Cell Size , Cytoskeleton/physiology , Fluorescent Dyes , Magnetics , Mice , Models, Biological , NIH 3T3 Cells , Rheology
19.
Mol Cell Biomech ; 4(2): 105-18, 2007 06.
Article in English | MEDLINE | ID: mdl-17937114

ABSTRACT

During migration, asymmetrically polarized cells achieve motion by coordinating the protrusion and retraction of their leading and trailing edges, respectively. Although it is well known that local changes in the dynamics of actin cytoskeleton remodeling drive these processes, neither the cytoskeletal rheological properties of these migrating cells are well quantified nor is it understand how these rheological properties are regulated by underlying molecular processes. In this report, we have used soft lithography to create morphologically polarized cells in order to examine rheological differences between the front and rear zone of an NIH 3T3 cell posed for migration. In addition, we trapped superparamagnetic beads with optical tweezers and precisely placed them at specific locations on the immobilized cells. The beads were then allowed to endocytose overnight before magnetic tweezers experiments were performed to measure the local rheological properties of the leading and trailing edges. Our results indicate that the leading edge has an approximately 1.9 times higher shear modulus than the trailing edge and that this increase in shear modulus correlates with a greater density of filamentous actin, as measured by phalloidin-staining observed through quantitative 3D microscopy.


Subject(s)
Cell Adhesion/physiology , Cell Polarity/physiology , Animals , Biomechanical Phenomena , Magnetics , Mice , Models, Biological , NIH 3T3 Cells , Rheology
SELECTION OF CITATIONS
SEARCH DETAIL
...