Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 132(20): 200402, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38829074

ABSTRACT

We aim to address the following question: if we start with a quantum state with a spontaneously broken higher-form symmetry, what is the fate of the system under weak local quantum measurements? We demonstrate that under certain conditions, a phase transition can be driven by weak measurements, which suppresses the spontaneous breaking of the 1-form symmetry and weakens the 1-form symmetry charge fluctuation. We analyze the nature of the transitions employing the tool of duality, and we demonstrate that some of the transitions driven by weak measurement enjoy a line of fixed points with self-duality.

2.
Nat Commun ; 15(1): 4254, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762501

ABSTRACT

Excitons in two-dimensional (2D) semiconductors have offered an attractive platform for optoelectronic and valleytronic devices. Further realizations of correlated phases of excitons promise device concepts not possible in the single particle picture. Here we report tunable exciton "spin" orders in WSe2/WS2 moiré superlattices. We find evidence of an in-plane (xy) order of exciton "spin"-here, valley pseudospin-around exciton filling vex = 1, which strongly suppresses the out-of-plane "spin" polarization. Upon increasing vex or applying a small magnetic field of ~10 mT, it transitions into an out-of-plane ferromagnetic (FM-z) spin order that spontaneously enhances the "spin" polarization, i.e., the circular helicity of emission light is higher than the excitation. The phase diagram is qualitatively captured by a spin-1/2 Bose-Hubbard model and is distinct from the fermion case. Our study paves the way for engineering exotic phases of matter from correlated spinor bosons, opening the door to a host of unconventional quantum devices.

3.
Nat Nanotechnol ; 18(3): 233-237, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36646827

ABSTRACT

Electrons in two-dimensional semiconductor moiré materials are more delocalized around the lattice sites than those in conventional solids1,2. The non-local contributions to the magnetic interactions can therefore be as important as the Anderson superexchange3, which makes the materials a unique platform to study the effects of competing magnetic interactions3,4. Here we report evidence of strongly frustrated magnetic interactions in a Wigner-Mott insulator at a two-thirds (2/3) filling of the moiré lattice in angle-aligned WSe2/WS2 bilayers. Magneto-optical measurements show that the net exchange interaction is antiferromagnetic for filling factors below 1 with a strong suppression at a 2/3 filling. The suppression is lifted on screening of the long-range Coulomb interactions and melting of the Wigner-Mott insulators by a nearby metallic gate. The results can be qualitatively captured by a honeycomb-lattice spin model with an antiferromagnetic nearest-neighbour coupling and a ferromagnetic second-neighbour coupling. Our study establishes semiconductor moiré materials as a model system for lattice-spin physics and frustrated magnetism5.

4.
Diagnostics (Basel) ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34943525

ABSTRACT

Increasingly, machine learning methods have been applied to aid in diagnosis with good results. However, some complex models can confuse physicians because they are difficult to understand, while data differences across diagnostic tasks and institutions can cause model performance fluctuations. To address this challenge, we combined the Deep Ensemble Model (DEM) and tree-structured Parzen Estimator (TPE) and proposed an adaptive deep ensemble learning method (TPE-DEM) for dynamic evolving diagnostic task scenarios. Different from previous research that focuses on achieving better performance with a fixed structure model, our proposed model uses TPE to efficiently aggregate simple models more easily understood by physicians and require less training data. In addition, our proposed model can choose the optimal number of layers for the model and the type and number of basic learners to achieve the best performance in different diagnostic task scenarios based on the data distribution and characteristics of the current diagnostic task. We tested our model on one dataset constructed with a partner hospital and five UCI public datasets with different characteristics and volumes based on various diagnostic tasks. Our performance evaluation results show that our proposed model outperforms other baseline models on different datasets. Our study provides a novel approach for simple and understandable machine learning models in tasks with variable datasets and feature sets, and the findings have important implications for the application of machine learning models in computer-aided diagnosis.

5.
Diagnostics (Basel) ; 11(9)2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34574018

ABSTRACT

Artificial intelligence can help physicians improve the accuracy of breast cancer diagnosis. However, the effectiveness of AI applications is limited by doctors' adoption of the results recommended by the personalized medical decision support system. Our primary purpose is to study the impact of external case characteristics (ECC) on the effectiveness of the personalized medical decision support system for breast cancer assisted diagnosis (PMDSS-BCAD) in making accurate recommendations. Therefore, we designed a novel comprehensive framework for case-based reasoning (CBR) that takes the impact of external features of cases into account, made use of the naive Bayes and k-nearest neighbor (KNN) algorithms (CBR-ECC), and developed a PMDSS-BCAD system by using the CBR-ECC model and external features as system components. Under the new case-based reasoning framework, the accuracy of the combined model of naive Bayes and KNN with an optimal K value of 2 is 99.40%. Moreover, in a real hospital scenario, users rated the PMDSS-BCAD system, which takes into account the external characteristics of the case, better than the original personalized system. These results suggest that PMDSS-BCD can not only provide doctors with more personalized and accurate results for auxiliary diagnosis, but also improve doctors' trust in the results, so as to encourage doctors to adopt the results recommended by the personalized system.

6.
Entropy (Basel) ; 22(1)2020 Jan 16.
Article in English | MEDLINE | ID: mdl-33285883

ABSTRACT

In order to explore the knowledge base, research hotspot, development status, and future research direction of healthcare research based on information theory and complex science, a total of 3031 literature data samples from the core collection of Web of Science from 2003 to 2019 were selected for bibliometric analysis. HistCite, CiteSpace, Excel, and other analytical tools were used to deeply analyze and visualize the temporal distribution, spatial distribution, knowledge evolution, literature co-citation, and research hotspots of this field. This paper reveals the current development of healthcare research field based on information theory and science of complexity, analyzes and discusses the research hotspots and future development that trends in this field, and provides important knowledge support for researchers in this field for further relevant research.

7.
Artif Intell Med ; 107: 101858, 2020 07.
Article in English | MEDLINE | ID: mdl-32828461

ABSTRACT

Significant progress has been achieved in recent years in the application of artificial intelligence (AI) for medical decision support. However, many AI-based systems often only provide a final prediction to the doctor without an explanation of its underlying decision-making process. In scenarios concerning deadly diseases, such as breast cancer, a doctor adopting an auxiliary prediction is taking big risks, as a bad decision can have very harmful consequences for the patient. We propose an auxiliary decision support system that combines ensemble learning with case-based reasoning to help doctors improve the accuracy of breast cancer recurrence prediction. The system provides a case-based interpretation of its prediction, which is easier for doctors to understand, helping them assess the reliability of the system's prediction and make their decisions accordingly. Our application and evaluation in a case study focusing on breast cancer recurrence prediction shows that the proposed system not only provides reasonably accurate predictions but is also well-received by oncologists.


Subject(s)
Artificial Intelligence , Breast Neoplasms , Breast Neoplasms/diagnosis , Breast Neoplasms/therapy , Female , Humans , Machine Learning , Neoplasm Recurrence, Local , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...