Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Biochem Biophys Res Commun ; 707: 149726, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38493747

ABSTRACT

Real-time reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) is an important method for the early diagnosis of coronavirus disease 2019 (COVID-19). This study investigated the effects of storage solution, temperature and detection time on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleic acid detection by RT-qPCR. Various concentrations of SARS-CoV-2 were added to inactive and non-inactive storage solution and the viral suspensions were stored at various temperatures (room temperature, 4, -20 and -80 °C). Then, at five different detection time points, the Ct values were determined by RT-qPCR. Active and inactive storage solutions and storage temperature have a great impact on the detection of N gene of SARS-CoV-2 at different concentration corridors but have little impact on the ORF gene. The storage time has a greater impact on the N gene and ORF gene at high concentrations but has no effect on the two genes at low concentrations. In conclusion, storage temperature, storage time and storage status (inactivated, non-inactivated) have no effect on the nucleic acid detection of SARS-CoV-2 at the same concentration. For different concentrations of SARS-CoV-2, the detection of N gene is mainly affected.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/diagnosis , Temperature , RNA, Viral/genetics , RNA, Viral/analysis , COVID-19 Testing , Sensitivity and Specificity , Real-Time Polymerase Chain Reaction/methods
2.
J Med Virol ; 95(12): e29306, 2023 12.
Article in English | MEDLINE | ID: mdl-38084772

ABSTRACT

The recently mutated severe acute respiratory syndrome coronavirus 2 variant Omicron has very high infectivity and a strong ability to evolve and evade immunity. We collected six sets of sera from uninfected individuals and individuals recovering from breakthrough infections who completed homologous or heterologous booster immunization and assessed their susceptibility against the BA.5.2.48, BF.7.14, XBB.1.5, XBB.1.5.4, and XBB.1.16 subvariants. The results demonstrated that the Omicron variants possess an exceptional potential to evade the immune barriers strengthened by vaccine administration and natural infections in the population, particularly XBB.1.16, and showed that heterologous boosters exhibit higher vaccine efficacy compared with homologous boosters.


Subject(s)
COVID-19 , Humans , COVID-19/prevention & control , SARS-CoV-2/genetics , Vaccination , Vaccine Efficacy , Antibodies, Neutralizing , Antibodies, Viral
3.
Virol J ; 20(1): 268, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37974193

ABSTRACT

BACKGROUND: Sapovirus (SaV) infection is increasing globally. Concurrently, several SaV-outbreaks were observed in children of Zhejiang province, China, in recent years, In this study, the genotypes of Sapovirus from seven outbreaks in the Zhejiang province were analysed. METHODS: A total of 105 faecal samples were collected from children aged between 4 and 17 years from the Zhejiang Provincial Center for Disease Control and Prevention between October 2021 and February 2023. Genotypes were processed using reverse transcription polymerase chain reaction and Sanger sequencing, while next-generation sequencing was used to generate a complete viral genome. Deduced amino acid sequences were analysed to detect VP1 gene mutations. RESULTS: In total, 60 SaV-positive patients were detected at a 57.14% (60/105) positivity rate. Positive rates in the seven outbreaks were: 22.22% (2/9), 15.00% (3/20), 93.10% (27/29), 84.21% (16/19), 28.57% (2/7), 53.33% (8/15) and 33.33% (2/6), respectively. Four genotypes were identified in the seven outbreaks, of which, GI.1 accounted for 14.29% (1/7), GI.2 accounted for 14.29% (1/7), GI.6 and GII.5 accounted for 14.29% (1/7), and GI.6 accounted for 57.14% (4/7). All patients were children and outbreaks predominantly occurred in primary schools and during cold seasons. Additionally, the complete sequence from the GI.6 outbreak strain showed high homology (identity: 99.99%) with few common substitutions (Y300S, N302S and L8M) in VP1 protein. CONCLUSIONS: SaV genotype diversity was observed in the seven outbreaks, with GI.6 being the main SaV genotype in Zhejiang province. It demonstrated high homology and may provide a platform for SaV prevention and control measures.


Subject(s)
Caliciviridae Infections , Gastroenteritis , Sapovirus , Child , Humans , Child, Preschool , Adolescent , Sapovirus/genetics , Gastroenteritis/epidemiology , Caliciviridae Infections/epidemiology , Phylogeny , Genotype , Disease Outbreaks , Feces
4.
Front Public Health ; 11: 1189969, 2023.
Article in English | MEDLINE | ID: mdl-37427288

ABSTRACT

Backgrounds: The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been a global threat since 2020. The emergence of the Omicron variant in 2021, which replaced Delta as the dominant variant of concern, has had a significant adverse impact on the global economy and public health. During this period, Zhejiang Province implemented dynamic zeroing and focused on preventing imported cases. This study aimed to gain clear insight into the characteristics of imported COVID-19 cases in Zhejiang Province. Methods: We conducted a systematic molecular epidemiological analysis of 146 imported cases between July 2021 and November 2022 in Zhejiang Province. Virus samples with cycle threshold (Ct) value less than 32 were performed next generation sequencing. Basing the whole genome sequence obtained after quality control and assembly of reads, the whole genome variation map and phylogenetic tree were constructed and further analyzed. Results: Our study identified critical months and populations for surveillance, profiled the variation of various lineages, determined the evolutionary relationships among various lineages of SARS-CoV-2, and compared the results in Zhejiang with those obtained worldwide during this period. Conclusion: The continuous molecular epidemiological surveillance of imported cases of COVID-19 in Zhejiang Province during 2021 to 2022 is consistent with the global epidemic trend.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , COVID-19/epidemiology , Phylogeny , China/epidemiology
5.
J Clin Virol ; 166: 105552, 2023 09.
Article in English | MEDLINE | ID: mdl-37523938

ABSTRACT

BACKGROUND: Coxsackievirus A10 (CA10) is one of the etiological agents associated with hand, foot and mouth disease (HFMD). OBJECTIVES: We aimed to perform a retrospective analysis of the molecular epidemiological characteristics and genetic features of HFMD associated with CA10 infections in Zhejiang Province from 2017 to 2022. STUDY DESIGN: Epidemiologic features were summarized. Throat swab specimens were collected and tested. The VP1 regions were sequenced for genotyping. CA10 positive samples were isolated. Whole genomes of CA10 isolations were sequenced. Nucleotide and amino acid changes were characterized. Phylogenetic trees were constructed. RESULTS: The number of HFMD cases fluctuated from 2017 to 2022. Children aged below 3 years accounted for the majority (66.29%) and boys were more frequently affected than girls. Cases peaked in June. The positivity rate of HEV was 62.69%. A total of 90 strains of CA10 were isolated and 53 genomes were obtained. All CA10 in this study could be assigned to two genogroups, C (C2) and F (F1 and F3). CONCLUSION: The clinical manifestations of HFMD associated with HEV are complex and diverse. CA10 infection may be emerging as a new and major cause of HFMD because an upward trend was observed in the proportion of CA10 cases after the use of EV71 vaccines. Different genogroups of CA10 had different geographic distribution patterns. Surveillance should be strengthened and further comprehensive studies should be continued to provide a scientific basis for HFMD prevention and control.


Subject(s)
Enterovirus A, Human , Enterovirus , Hand, Foot and Mouth Disease , Child , Male , Female , Humans , Infant , Hand, Foot and Mouth Disease/epidemiology , Phylogeny , Retrospective Studies , China/epidemiology , Genomics , Enterovirus/genetics
6.
PLoS Negl Trop Dis ; 17(7): e0011488, 2023 07.
Article in English | MEDLINE | ID: mdl-37486928

ABSTRACT

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging tick-borne infection with a high mortality rate in humans, which is caused by Dabie bandavirus (DBV), formerly known as SFTS virus. Clinical manifestations of SFTS are characterized by high fever, thrombocytopenia, leukopenia, hemorrhage, gastrointestinal symptoms, myalgia and local lymph node enlargement with up to 30% case fatality rates in human. Macrophage depletion in secondary lymphoid organs have important roles in the pathogenic process of fatal SFTS, but its exact cell death mechanism remains largely unknown. Here, we showed for the first time that DBV infection induced macrophagic pyroptosis, as evidenced by swollen cells, pore-forming structures, accumulation of gasdermin D N-terminal (GSDMD-NT) as well as the release of lactate dehydrogenase (LDH) and IL-1ß in human macrophages. In addition to the upregulation of pyronecrosis genes, the expressions of pyroptosis-related proteins (GSDMD, caspase-1 and IL-1ß) were also elevated. To be noted, platelets were found to play a protective role in DBV-derived pyroptosis. Transcriptome analysis and in vitro studies demonstrated that platelets significantly reduced the gene expressions and protein production of pro-pyroptotic markers and inflammatory cytokines in macrophages, whereas platelets conferred a propagation advantage for DBV. Collectively, this study demonstrates a novel mechanism by which DBV invasion triggers pyroptosis as a host defense to remove replication niches in human macrophages and platelets provide an additional layer to reduce cellular death. These findings may have important implications to the pathogenesis of lethal DBV, and provide new ideas for developing novel therapeutics to combat its infection.


Subject(s)
Intracellular Signaling Peptides and Proteins , Severe Fever with Thrombocytopenia Syndrome , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Blood Platelets , Pyroptosis , Macrophages/metabolism
7.
Virus Genes ; 59(5): 693-702, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37468826

ABSTRACT

The chikungunya virus (CHIKV) is widespread. In Zhejiang province, China, CHIKV infection is often associated with travelers from tropical and subtropical countries. In the present study, three CHIKV isolates from serum samples of travelers in Zhejiang province in 2019 were sequenced, and phylogenetically analyzed to study their molecular characteristics. Sequence analysis showed that the non-structural protein and the structural protein had 37 and 28 amino acid mutations, respectively; no mutation site was found at the E1-A226 residue, which could increase the adaptability of CHIKV to Aedes albopictus. All three samples carried two mutations, namely, E1-K211E and E2-V264A, which were introduced to Bangladesh around late 2015 and Thailand in early 2017. Phylogenetic analysis revealed that these three CHIKVs were Indian Ocean lineage of the East Africa/Central/South Africa genotype (ECSA) and that the MF773566 strain from Bangladesh (Australia/Bangladesh 2017) had the closest evolutionary relationship. The three CHICKs imported into Zhejiang province in 2019 belonged to the ECSA genotype and had multiple amino acid variation sites. The variation in the three samples provides a certain reference for the subsequent research on CHIKV evolution.


Subject(s)
Chikungunya Fever , Chikungunya virus , Humans , Chikungunya virus/genetics , Phylogeny , Indian Ocean , Chikungunya Fever/epidemiology , China , Disease Outbreaks
8.
Viruses ; 15(4)2023 04 17.
Article in English | MEDLINE | ID: mdl-37112963

ABSTRACT

The R294K mutation in neuraminidase (NA) causes resistance to oseltamivir in the avian influenza virus H7N9. Reverse transcription droplet digital polymerase chain reaction (RT-dd PCR) is a novel technique for detecting single-nucleotide polymorphisms. This study aimed to develop an RT-dd PCR method for detecting the R294K mutation in H7N9. Primers and dual probes were designed using the H7N9 NA gene and the annealing temperature was optimized at 58.0 °C. The sensitivity of our RT-dd PCR method was not significantly different from that of RT-qPCR (p = 0.625), but it could specifically detect R294 and 294K in H7N9. Among 89 clinical samples, 2 showed the R294K mutation. These two strains were evaluated using a neuraminidase inhibition test, which revealed that their sensitivity to oseltamivir was greatly reduced. The sensitivity and specificity of RT-dd PCR were similar to those of RT-qPCR and its accuracy was comparable to that of NGS. The RT-dd PCR method had the advantages of absolute quantitation, eliminating the need for a calibration standard curve, and being simpler in both experimental operation and result interpretation than NGS. Therefore, this RT-dd PCR method can be used to quantitatively detect the R294K mutation in H7N9.


Subject(s)
Influenza A Virus, H7N9 Subtype , Influenza in Birds , Influenza, Human , Animals , Humans , Oseltamivir/pharmacology , Oseltamivir/therapeutic use , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Influenza A Virus, H7N9 Subtype/genetics , Neuraminidase/genetics , Neuraminidase/metabolism , Reverse Transcription , Polymerase Chain Reaction , Mutation , Birds/genetics
9.
J Thromb Haemost ; 21(5): 1336-1351, 2023 05.
Article in English | MEDLINE | ID: mdl-36792011

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) virus (SFTSV) infection causes an emerging hemorrhagic fever in East Asia with a high mortality rate. Thrombocytopenia is a consistent feature of SFTS illness, but the mechanism remains elusive. OBJECTIVES: We aimed to better understand the role of platelets in the pathophysiology of SFTSV infection, including the development of thrombocytopenia. METHODS: Using platelets from healthy volunteers and patients with SFTS, we evaluated the functional changes in platelets against SFTSV infection. We investigated the direct effect of glycoprotein VI on platelet-SFTSV interaction by quantitative real-time PCR, molecular docking, surface plasmon resonance spectrometry, flow cytometry, western blot, and platelet functional studies in vitro. Interactions of SFTSV and platelet-SFTSV complexes with macrophages were also determined by scanning electron microscope, quantitative real-time PCR, and flow cytometry. RESULTS: This study is the first to demonstrate that platelets are capable of harboring and producing SFTSV particles. Structural and functional studies found that SFTSVs bind platelet glycoprotein VI to potentiate platelet activation, including platelet aggregation, adenosine triphosphate release, spreading, clot retraction, coagulation, phosphatidylserine exposure, thrombus formation, and adherence. In vitro mechanistic studies highlighted that the interaction of platelets with human THP-1 cells promoted SFTSV clearance and suppressed cytokine production in macrophages. However, unwanted SFTSV replication in macrophages reciprocally aggravated SFTSV persistence in the circulation, which may contribute to thrombocytopenia and other complications during SFTSV infection. CONCLUSION: These findings together highlighted the pathophysiological role of platelets in initial intrinsic defense against SFTSV infections, as well as intertwined processes with host immunity, which can also lead to thrombocytopenia and poor prognosis.


Subject(s)
Bunyaviridae Infections , Severe Fever with Thrombocytopenia Syndrome , Thrombocytopenia , Humans , Blood Platelets , Severe Fever with Thrombocytopenia Syndrome/complications , Bunyaviridae Infections/complications , Molecular Docking Simulation , Thrombocytopenia/complications , Platelet Activation
10.
Virus Res ; 325: 199046, 2023 02.
Article in English | MEDLINE | ID: mdl-36657615

ABSTRACT

Norovirus is the leading cause of viral gastroenteritis globally, and poses substantial threats to public health. Despite substantial progress made in preventing norovirus diseases, the lack of a robust virus culture system has hampered biological research and effective strategies to combat this pathogen. Reverse genetic system is the technique to generate infectious viruses from cloned genetic constructs, which is a powerful tool for the investigation of viral pathogenesis and for the development of novel drugs and vaccines. The strategies of reverse genetics include bacterial artificial chromosomes, vaccinia virus vectors, and entirely plasmid-based systems. Since each strategy has its pros and cons, choosing appropriate approaches will greatly improve the efficiency of virus rescue. Reverse genetic systems that have been employed for norovirus greatly extend its life cycle and facilitate the development of medical countermeasures. In this review, we summarize the current knowledge on the structure, transmission, genetic evolution and clinical manifestations of norovirus, and describe recent advances in the studies of norovirus reverse genetics as well as its future prospects for therapeutics and vaccine development.


Subject(s)
Caliciviridae Infections , Norovirus , Humans , Norovirus/genetics , Reverse Genetics/methods , Plasmids
11.
Virol J ; 18(1): 89, 2021 04 30.
Article in English | MEDLINE | ID: mdl-33931105

ABSTRACT

BACKGROUND: A novel coronavirus (SARS-CoV-2) emerging has put global public health institutes on high alert. Little is known about the epidemiology and clinical characteristics of human coronaviruses infections in relation to infections with other respiratory viruses. METHODS: From February 2017 to December 2019, 3660 respiratory samples submitted to Zhejiang Children Hospital with acute respiratory symptoms were tested for four human coronaviruses RNA by a novel two-tube multiplex reverse transcription polymerase chain reaction assays. Samples were also screened for the occurrence of SARS-CoV-2 by reverse transcription-PCR analysis. RESULTS: Coronavirus RNAs were detected in 144 (3.93%) specimens: HCoV-HKU1 in 38 specimens, HCoV-NL63 in 62 specimens, HCoV-OC43 in 38 specimens and HCoV-229E in 8 specimens. Genomes for SARS-CoV-2 were absent in all specimens by RT-PCR analysis during the study period. The majority of HCoV infections occurred during fall months. No significant differences in gender, sample type, year were seen across species. 37.5 to 52.6% of coronaviruses detected were in specimens testing positive for other respiratory viruses. Phylogenic analysis identified that Zhejiang coronaviruses belong to multiple lineages of the coronaviruses circulating in other countries and areas. CONCLUSION: Common HCoVs may have annual peaks of circulation in fall months in the Zhejiang province, China. Genetic relatedness to the coronaviruses in other regions suggests further surveillance on human coronaviruses in clinical samples are clearly needed to understand their patterns of activity and role in the emergence of novel coronaviruses.


Subject(s)
COVID-19/diagnosis , Multiplex Polymerase Chain Reaction/methods , Respiratory Tract Infections/virology , SARS-CoV-2/genetics , Adolescent , Betacoronavirus/genetics , Betacoronavirus/isolation & purification , COVID-19/complications , COVID-19/genetics , COVID-19/physiopathology , Child , Child, Preschool , China/epidemiology , Coronavirus/genetics , Coronavirus/isolation & purification , Coronavirus 229E, Human/genetics , Coronavirus 229E, Human/isolation & purification , Coronavirus NL63, Human/genetics , Coronavirus NL63, Human/isolation & purification , Coronavirus OC43, Human/genetics , Coronavirus OC43, Human/isolation & purification , Female , Hospitalization , Humans , Infant , Infant, Newborn , Male , Phylogeny , Respiratory Tract Infections/complications , Respiratory Tract Infections/etiology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...