Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 147
Filter
1.
J Magn Reson Imaging ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38726477

ABSTRACT

BACKGROUND: Accurate determination of human epidermal growth factor receptor 2 (HER2) is important for choosing optimal HER2 targeting treatment strategies. HER2-low is currently considered HER2-negative, but patients may be eligible to receive new anti-HER2 drug conjugates. PURPOSE: To use breast MRI BI-RADS features for classifying three HER2 levels, first to distinguish HER2-zero from HER2-low/positive (Task-1), and then to distinguish HER2-low from HER2-positive (Task-2). STUDY TYPE: Retrospective. POPULATION: 621 invasive ductal cancer, 245 HER2-zero, 191 HER2-low, and 185 HER2-positive. For Task-1, 488 cases for training and 133 for testing. For Task-2, 294 cases for training and 82 for testing. FIELD STRENGTH/SEQUENCE: 3.0 T; 3D T1-weighted DCE, short time inversion recovery T2, and single-shot EPI DWI. ASSESSMENT: Pathological information and BI-RADS features were compared. Random Forest was used to select MRI features, and then four machine learning (ML) algorithms: decision tree (DT), support vector machine (SVM), k-nearest neighbors (k-NN), and artificial neural nets (ANN), were applied to build models. STATISTICAL TESTS: Chi-square test, one-way analysis of variance, and Kruskal-Wallis test were performed. The P values <0.05 were considered statistically significant. For ML models, the generated probability was used to construct the ROC curves. RESULTS: Peritumoral edema, the presence of multiple lesions and non-mass enhancement (NME) showed significant differences. For distinguishing HER2-zero from non-zero (low + positive), multiple lesions, edema, margin, and tumor size were selected, and the k-NN model achieved the highest AUC of 0.86 in the training set and 0.79 in the testing set. For differentiating HER2-low from HER2-positive, multiple lesions, edema, and margin were selected, and the DT model achieved the highest AUC of 0.79 in the training set and 0.69 in the testing set. DATA CONCLUSION: BI-RADS features read by radiologists from preoperative MRI can be analyzed using more sophisticated feature selection and ML algorithms to build models for the classification of HER2 status and identify HER2-low. TECHNICAL EFFICACY: Stage 2.

2.
Eur Arch Otorhinolaryngol ; 281(3): 1473-1481, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38127096

ABSTRACT

PURPOSE: By radiomic analysis of the postcontrast CT images, this study aimed to predict locoregional recurrence (LR) of locally advanced oropharyngeal cancer (OPC) and hypopharyngeal cancer (HPC). METHODS: A total of 192 patients with stage III-IV OPC or HPC from two independent cohort were randomly split into a training cohort with 153 cases and a testing cohort with 39 cases. Only primary tumor mass was manually segmented. Radiomic features were extracted using PyRadiomics, and then the support vector machine was used to build the radiomic model with fivefold cross-validation process in the training data set. For each case, a radiomics score was generated to indicate the probability of LR. RESULTS: There were 94 patients with LR assigned in the progression group and 98 patients without LR assigned in the stable group. There was no significant difference of TNM staging, treatment strategies and common risk factors between these two groups. For the training data set, the radiomics model to predict LR showed 83.7% accuracy and 0.832 (95% CI 0.72, 0.87) area under the ROC curve (AUC). For the test data set, the accuracy and AUC slightly declined to 79.5% and 0.770 (95% CI 0.64, 0.80), respectively. The sensitivity/specificity of training and test data set for LR prediction were 77.6%/89.6%, and 66.7%/90.5%, respectively. CONCLUSIONS: The image-based radiomic approach could provide a reliable LR prediction model in locally advanced OPC and HPC. Early identification of those prone to post-treatment recurrence would be helpful for appropriate adjustments to treatment strategies and post-treatment surveillance.


Subject(s)
Hypopharyngeal Neoplasms , Mouth Neoplasms , Oropharyngeal Neoplasms , Humans , Hypopharyngeal Neoplasms/diagnostic imaging , Hypopharyngeal Neoplasms/therapy , Radiomics , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/therapy , Risk Factors , Retrospective Studies
3.
Cancers (Basel) ; 15(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38067374

ABSTRACT

A total of 457 patients, including 241 HR+/HER2- patients, 134 HER2+ patients, and 82 TN patients, were studied. The percentage of TILs in the stroma adjacent to the tumor cells was assessed using a 10% cutoff. The low TIL percentages were 82% in the HR+ patients, 63% in the HER2+ patients, and 56% in the TN patients (p < 0.001). MRI features such as morphology as mass or non-mass enhancement (NME), shape, margin, internal enhancement, presence of peritumoral edema, and the DCE kinetic pattern were assessed. Tumor sizes were smaller in the HR+/HER2- group (p < 0.001); HER2+ was more likely to present as NME (p = 0.031); homogeneous enhancement was mostly seen in HR+ (p < 0.001); and the peritumoral edema was present in 45% HR+, 71% HER2+, and 80% TN (p < 0.001). In each subtype, the MR features between the high- vs. low-TIL groups were compared. In HR+/HER2-, peritumoral edema was more likely to be present in those with high TILs (70%) than in those with low TILs (40%, p < 0.001). In TN, those with high TILs were more likely to present a regular shape (33%) than those with low TILs (13%, p = 0.029) and more likely to present the circumscribed margin (19%) than those with low TILs (2%, p = 0.009).

4.
Med Biol Eng Comput ; 61(3): 757-771, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36598674

ABSTRACT

Dynamic contrast-enhanced MRI (DCE-MRI) is routinely included in the prostate MRI protocol for a long time; its role has been questioned. It provides rich spatial and temporal information. However, the contained information cannot be fully extracted in radiologists' visual evaluation. More sophisticated computer algorithms are needed to extract the higher-order information. The purpose of this study was to apply a new deep learning algorithm, the bi-directional convolutional long short-term memory (CLSTM) network, and the radiomics analysis for differential diagnosis of PCa and benign prostatic hyperplasia (BPH). To systematically investigate the optimal amount of peritumoral tissue for improving diagnosis, a total of 9 ROIs were delineated by using 3 different methods. The results showed that bi-directional CLSTM with ± 20% region growing peritumoral ROI achieved the mean AUC of 0.89, better than the mean AUC of 0.84 by using the tumor alone without any peritumoral tissue (p = 0.25, not significant). For all 9 ROIs, deep learning had higher AUC than radiomics, but only reaching the significant difference for ± 20% region growing peritumoral ROI (0.89 vs. 0.79, p = 0.04). In conclusion, the kinetic information extracted from DCE-MRI using bi-directional CLSTM may provide helpful supplementary information for diagnosis of PCa.


Subject(s)
Deep Learning , Prostatic Hyperplasia , Prostatic Neoplasms , Male , Humans , Prostatic Hyperplasia/diagnostic imaging , Diagnosis, Differential , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnosis , Contrast Media , Retrospective Studies
5.
Acad Radiol ; 30 Suppl 2: S161-S171, 2023 09.
Article in English | MEDLINE | ID: mdl-36631349

ABSTRACT

RATIONALE AND OBJECTIVES: Diagnosis of breast cancer on MRI requires, first, the identification of suspicious lesions; second, the characterization to give a diagnostic impression. We implemented Mask Reginal-Convolutional Neural Network (R-CNN) to detect abnormal lesions, followed by ResNet50 to estimate the malignancy probability. MATERIALS AND METHODS: Two datasets were used. The first set had 176 cases, 103 cancer, and 73 benign. The second set had 84 cases, 53 cancer, and 31 benign. For detection, the pre-contrast image and the subtraction images of left and right breasts were used as inputs, so the symmetry could be considered. The detected suspicious area was characterized by ResNet50, using three DCE parametric maps as inputs. The results obtained using slice-based analyses were combined to give a lesion-based diagnosis. RESULTS: In the first dataset, 101 of 103 cancers were detected by Mask R-CNN as suspicious, and 99 of 101 were correctly classified by ResNet50 as cancer, with a sensitivity of 99/103 = 96%. 48 of 73 benign lesions and 131 normal areas were identified as suspicious. Following classification by ResNet50, only 16 benign and 16 normal areas remained as malignant. The second dataset was used for independent testing. The sensitivity was 43/53 = 81%. Of the total of 121 identified non-cancerous lesions, only 6 of 31 benign lesions and 22 normal tissues were classified as malignant. CONCLUSION: ResNet50 could eliminate approximately 80% of false positives detected by Mask R-CNN. Combining Mask R-CNN and ResNet50 has the potential to develop a fully-automatic computer-aided diagnostic system for breast cancer on MRI.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Female , Breast Neoplasms/diagnostic imaging , Neural Networks, Computer , Magnetic Resonance Imaging/methods
6.
Neurol Sci ; 44(4): 1289-1300, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36445541

ABSTRACT

PURPOSE: To build three prognostic models using radiomics analysis of the hemorrhagic lesions, clinical variables, and their combination, to predict the outcome of stroke patients with spontaneous intracerebral hemorrhage (sICH). MATERIALS AND METHODS: Eighty-three sICH patients were included. Among them, 40 patients (48.2%) had poor prognosis with modified Rankin scale (mRS) of 5 and 6 at discharge, and the prognostic model was built to differentiate mRS ≤ 4 vs. 5 + 6. The region of interest (ROI) of intraparenchymal hemorrhage (IPH) and intraventricular hemorrhage (IVH) were separately segmented. Features were extracted using PyRadiomics, and the support vector machine was applied to select features and build radiomics models based on IPH and IPH + IVH. The clinical models were built using multivariate logistic regression, and then the radiomics scores were combined with clinical variables to build the combined model. RESULTS: When using IPH, the AUC for radiomics, clinical, and combined model was 0.78, 0.82, and 0.87, respectively. When using IPH + IVH, the AUC was increased to 0.80, 0.84, and 0.90, respectively. The combined model had a significantly improved AUC compared to the radiomics by DeLong test. A clinical prognostic model based on the ICH score of 0-1 only achieved AUC of 0.71. CONCLUSIONS: The combined model using the radiomics score derived from IPH + IVH and the clinical factors could achieve a high accuracy in prediction of sICH patients with poor outcome, which may be used to assist in making the decision about the optimal care.


Subject(s)
Cerebral Hemorrhage , Stroke , Humans , Stroke/diagnostic imaging , Prognosis , Retrospective Studies
7.
J Perianesth Nurs ; 38(2): 180-185, 2023 04.
Article in English | MEDLINE | ID: mdl-36229328

ABSTRACT

PURPOSE: Health care workers (HCWs), and in particular anesthesia providers, often must perform aerosol-generating medical procedures (AGMPs). However, no studies have analyzed droplet distributions on the bodies of HCWs during AGMPs. Therefore, the purpose of this study was to assess and analyze droplet distributions on the bodies of HCWs during suction of oral cavities with and without oral airways and during extubations. DESIGN: Using a quasi-experiemental design, we assumed the HCWs perform suction and extubation on intubated patients, and we prepared an intubated mannequin mimicking a patient. This study performed the oral suction and extubation on the intubated mannequin (with or without oral airways in place) and analyzed the droplet distributions. METHODS: We prepared a mannequin intubated with an 8.0 mm endotracheal tube, assuming the situation of general anesthesia. We designed the body mapping gown, and divided it into 10 areas including the head, neck, chest, abdomen, upper arms, forearms, and hands. We classified experiments into group O when suctions were performed on the mannequin with an oral airway, and into group X when the suctions were performed on the mannequin without an oral airway. An experienced board-certified anesthesiologist performed 10 oral suctions on each mannequin, and 10 extubations. We counted the droplets on the anesthesiologist's gown according to the divided areas after each procedure. FINDINGS: The mean droplet count after suction was 6.20 ± 2.201 in group O and 13.6 ± 4.300 in group X, with a significant difference between the two groups (P < .001). The right and left hands were the most contaminated areas in group O (2.8 ± 1.033 droplets and 2.0 ± 0.943 droplets, respectively). The abdomen, right hand, left forearm, and left hand showed many droplets in group X. (1.3 ± 1.337 droplets, 3.1 ± 1.792 droplets, 3.2 ± 3.910 droplets, and 4.3 ± 2.214 droplets, respectively). The chest, abdomen, and left hand presented significantly more droplets in group X than in group O. The trunk area (chest and abdomen) was exposed to more droplets during extubations than during suctions. CONCLUSIONS: During suctions, more droplets are splattered from mannequins without oral airways than from those with oral airways. The right and left hands were the most contaminated areas in group O. Moreover, the abdomen, right hand, left forearm, and left hand presented a lot of droplets in group X. In addition, extubations contaminate wider areas (the head, neck, chest and abdomen) of an HCW than suctions.


Subject(s)
Health Personnel , Intubation, Intratracheal , Humans , Suction , Aerosols
9.
Front Oncol ; 12: 991892, 2022.
Article in English | MEDLINE | ID: mdl-36582788

ABSTRACT

Purpose: To implement two Artificial Intelligence (AI) methods, radiomics and deep learning, to build diagnostic models for patients presenting with architectural distortion on Digital Breast Tomosynthesis (DBT) images. Materials and Methods: A total of 298 patients were identified from a retrospective review, and all of them had confirmed pathological diagnoses, 175 malignant and 123 benign. The BI-RADS scores of DBT were obtained from the radiology reports, classified into 2, 3, 4A, 4B, 4C, and 5. The architectural distortion areas on craniocaudal (CC) and mediolateral oblique (MLO) views were manually outlined as the region of interest (ROI) for the radiomics analysis. Features were extracted using PyRadiomics, and then the support vector machine (SVM) was applied to select important features and build the classification model. Deep learning was performed using the ResNet50 algorithm, with the binary output of malignancy and benignity. The Gradient-weighted Class Activation Mapping (Grad-CAM) method was utilized to localize the suspicious areas. The predicted malignancy probability was used to construct the ROC curves, compared by the DeLong test. The binary diagnosis was made using the threshold of ≥ 0.5 as malignant. Results: The majority of malignant lesions had BI-RADS scores of 4B, 4C, and 5 (148/175 = 84.6%). In the benign group, a substantial number of patients also had high BI-RADS ≥ 4B (56/123 = 45.5%), and the majority had BI-RADS ≥ 4A (102/123 = 82.9%). The radiomics model built using the combined CC+MLO features yielded an area under curve (AUC) of 0.82, the sensitivity of 0.78, specificity of 0.68, and accuracy of 0.74. If only features from CC were used, the AUC was 0.77, and if only features from MLO were used, the AUC was 0.72. The deep-learning model yielded an AUC of 0.61, significantly lower than all radiomics models (p<0.01), which was presumably due to the use of the entire image as input. The Grad-CAM could localize the architectural distortion areas. Conclusion: The radiomics model can achieve a satisfactory diagnostic accuracy, and the high specificity in the benign group can be used to avoid unnecessary biopsies. Deep learning can be used to localize the architectural distortion areas, which may provide an automatic method for ROI delineation to facilitate the development of a fully-automatic computer-aided diagnosis system using combined AI strategies.

10.
Medicine (Baltimore) ; 101(47): e31424, 2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36451385

ABSTRACT

Glenohumeral joint (GHJ) space narrowing has been demonstrated to be an important morphologic parameter of glenohumeral osteoarthritis (GHO). However, the morphology of GHJ space is irregular because of degeneration of subchondral bone and articular cartilage. Thus, we devised GHJ cartilage cross-sectional area (GHJCCSA) as a new diagnostic morphological parameter to assess the irregular morphologic change of GHJ. GHJ samples were acquired from 33 patients with GHO and from 33 normal controls without evidence of GHO based on shoulder magnetic resonance imaging. T2-weighted coronal MRIs were collected at the GHJ level for all individuals. GHJCCSA and GHJ cartilage thickness (GHJCT) at the GHJ were measured on MRIs using a graphic measuring system. The GHJCCSA was measured as the whole cartilage cross-sectional area of the GHJ. The average GHJCCSA was 115.28 ±â€…17.36 mm2 in normal individuals and 61.77 ±â€…13.74 mm2 in the GHO group. The mean GHJCT was 2.06 ±â€…0.35 mm in normal individuals and 1.50 ±â€…0.28 mm in the GHO group. GHO patients had significantly lower GHJCCSA (P < .001) and GHJCT (P < .001) than normal individuals. Receiver operator characteristics curve analysis revealed that the optimal cutoff score of the GHJCCSA was 82.21 mm2, with a sensitivity of 97.0%, a specificity of 97.0%, and an area under the curve of 0.99 (95% CI: 0.97-1.00). Although GHJCCSA and GHJCT were both significantly associated with GHO, the GHJCCSA was a more sensitive measurement parameter.


Subject(s)
Cartilage, Articular , Osteoarthritis , Shoulder Joint , Humans , Shoulder Joint/diagnostic imaging , Osteoarthritis/diagnostic imaging , Cartilage, Articular/diagnostic imaging
11.
Diagnostics (Basel) ; 12(11)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36428815

ABSTRACT

Background: Among patients undergoing head computed tomography (CT) scans within 3 h of spontaneous intracerebral hemorrhage (sICH), 28% to 38% have hematoma expansion (HE) on follow-up CT. This study aimed to predict HE using radiomics analysis and investigate the impact of intraventricular hemorrhage (IVH) compared with the conventional approach based on intraparenchymal hemorrhage (IPH) alone. Methods: This retrospective study enrolled 127 patients with baseline and follow-up non-contrast CT (NCCT) within 4~72 h of sICH. IPH and IVH were outlined separately for performing radiomics analysis. HE was defined as an absolute hematoma growth > 6 mL or percentage growth > 33% of either IPH (HEP) or a combination of IPH and IVH (HEP+V) at follow-up. Radiomic features were extracted using PyRadiomics, and then the support vector machine (SVM) was used to build the classification model. For each case, a radiomics score was generated to indicate the probability of HE. Results: There were 57 (44.9%) HEP and 70 (55.1%) non-HEP based on IPH alone, and 58 (45.7%) HEP+V and 69 (54.3%) non-HEP+V based on IPH + IVH. The majority (>94%) of HE patients had poor early outcomes (death or modified Rankin Scale > 3 at discharge). The radiomics model built using baseline IPH to predict HEP (RMP) showed 76.4% accuracy and 0.73 area under the ROC curve (AUC). The other model using IPH + IVH to predict HEP+V (RMP+V) had higher accuracy (81.9%) with AUC = 0.80, and this model could predict poor outcomes. The sensitivity/specificity of RMP and RMP+V for HE prediction were 71.9%/80.0% and 79.3%/84.1%, respectively. Conclusion: The proposed radiomics approach with additional IVH information can improve the accuracy in prediction of HE, which is associated with poor clinical outcomes. A reliable radiomics model may provide a robust tool to help manage ICH patients and to enroll high-risk ICH cases into anti-expansion or neuroprotection drug trials.

12.
Medicine (Baltimore) ; 101(45): e31723, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36397357

ABSTRACT

A narrowed sacroiliac joint (SIJ) space has been considered to be a major morphologic parameter of ankylosing spondylitis (AS). Previous studies revealed that the sacroiliac joint thickness (SIJT) correlated with AS in patients. However, irregular narrowing is different from thickness. Thus, we devised a method using the sacroiliac joint cross-sectional area (SIJA) as a new morphological parameter for use in evaluating AS. We hypothesized that the SIJA is a key morphologic parameter in diagnosing AS. SIJ samples were collected from 107 patients with AS, and from 85 control subjects who underwent SIJ-view X-rays that revealed no evidence of AS. We measured the SIJT and SIJA at the SIJ margin on X-rays using our picture archiving and communications system. The SIJT was measured at the narrowest point between the sacrum and the ilium. The SIJA was measured as the entire cross-sectional joint space area of the SIJ in the X-ray images. The average SIJT was 3.09 ±â€…0.61 mm in the control group, and 1.59 ±â€…0.52 mm in the AS group. The average SIJA was 166.74 ±â€…39.98 mm2 in the control group, and 68.65 ±â€…24.11 mm2 in the AS group. AS patients had significantly lower SIJT (P < .001) and SIJA (P < .001) than the control subjects. Receiver operating characteristics curve analysis showed that the best cutoff point for the SIJT was 2.33 mm, with 92.5% sensitivity, 94.1% specificity, and an area under the curve of 0.97 (95% confidence interval: 0.95-0.99). The optimal cutoff point for the SIJA was 106.19 mm2, with 93.5% sensitivity, 95.3% specificity, and an area under the curve of 0.98 (95% confidence interval: 0.97-1.00). Although the SIJT and SIJA were both significantly associated with AS, the SIJA parameter was a more sensitive measurement. We concluded that the SIJA is an easy-to-use, fast, cheap, and useful new morphological parameter for predicting AS.


Subject(s)
Sacroiliac Joint , Spondylitis, Ankylosing , Humans , Sacroiliac Joint/diagnostic imaging , Spondylitis, Ankylosing/diagnostic imaging , Sacrum , Ilium
13.
Medicine (Baltimore) ; 101(40): e30906, 2022 Oct 07.
Article in English | MEDLINE | ID: mdl-36221400

ABSTRACT

Carpal tunnel syndrome (CTS) is correlated with increased intracarpal canal pressure (ICP). The effect of palmaris longus tendon (PLT) loading on ICP is documented in previous researches. PLT loading induces the greatest absolute increase in ICP. Therefore, to analyze the connection between the PLT and CTS, we newly made the measurement of the PLT cross-sectional area (PLTCSA). We assumed that PLTCSA is a reliable diagnostic parameter in the CTS. PLTCSA measurement data were acquired from 21 patients with CTS, and from 21 normal subjects who underwent wrist magnetic resonance imaging (W-MRI). We measured the PLTCSA at the level of pisiform on W-MRI. The PLTCSA was measured on the outlining of PLT. The two different cutoff values in the analysis were determined using receiver operating characteristic (ROC) analysis. The mean PLTCSA was 2.34 ± 0.82 mm2 in the normal group and 3.97 ± 1.18 mm2 in the CTS group. ROC curve analysis concluded that the best cutoff point for the PLTCSA was 2.81 mm2, with 76.2% sensitivity, 71.4% specificity, and area under the curve of 0.88 (95% CI, 0.78-0.98). PLTCSA is a sensitive, new, objective morphological parameter for evaluating CTS.


Subject(s)
Carpal Tunnel Syndrome , Carpal Tunnel Syndrome/diagnosis , Carpal Tunnel Syndrome/pathology , Humans , Median Nerve/diagnostic imaging , Sensitivity and Specificity , Tendons/diagnostic imaging , Ultrasonography , Wrist , Wrist Joint
15.
Front Public Health ; 10: 915615, 2022.
Article in English | MEDLINE | ID: mdl-36033815

ABSTRACT

Purpose: To evaluate the volumetric change of COVID-19 lesions in the lung of patients receiving serial CT imaging for monitoring the evolution of the disease and the response to treatment. Materials and methods: A total of 48 patients, 28 males and 20 females, who were confirmed to have COVID-19 infection and received chest CT examination, were identified. The age range was 21-93 years old, with a mean of 54 ± 18 years. Of them, 33 patients received the first follow-up (F/U) scan, 29 patients received the second F/U scan, and 11 patients received the third F/U scan. The lesion region of interest (ROI) was manually outlined. A two-step registration method, first using the Affine alignment, followed by the non-rigid Demons algorithm, was developed to match the lung areas on the baseline and F/U images. The baseline lesion ROI was mapped to the F/U images using the obtained geometric transformation matrix, and the radiologist outlined the lesion ROI on F/U CT again. Results: The median (interquartile range) lesion volume (cm3) was 30.9 (83.1) at baseline CT exam, 18.3 (43.9) at first F/U, 7.6 (18.9) at second F/U, and 0.6 (19.1) at third F/U, which showed a significant trend of decrease with time. The two-step registration could significantly decrease the mean squared error (MSE) between baseline and F/U images with p < 0.001. The method could match the lung areas and the large vessels inside the lung. When using the mapped baseline ROIs as references, the second-look ROI drawing showed a significantly increased volume, p < 0.05, presumably due to the consideration of all the infected areas at baseline. Conclusion: The results suggest that the registration method can be applied to assist in the evaluation of longitudinal changes of COVID-19 lesions on chest CT.


Subject(s)
COVID-19 , Adult , Aged , Aged, 80 and over , Algorithms , Female , Humans , Lung , Male , Middle Aged , Tomography, X-Ray Computed , Young Adult
16.
Diagnostics (Basel) ; 12(7)2022 Jul 10.
Article in English | MEDLINE | ID: mdl-35885581

ABSTRACT

(1) Background: Radiomics analysis of spontaneous intracerebral hemorrhages on computed tomography (CT) images has been proven effective in predicting hematoma expansion and poor neurologic outcome. In contrast, there is limited evidence on its predictive abilities for traumatic intraparenchymal hemorrhage (IPH). (2) Methods: A retrospective analysis of 107 traumatic IPH patients was conducted. Among them, 45 patients (42.1%) showed hemorrhagic progression of contusion (HPC) and 51 patients (47.7%) had poor neurological outcome. The IPH on the initial CT was manually segmented for radiomics analysis. After feature extraction, selection and repeatability evaluation, several machine learning algorithms were used to derive radiomics scores (R-scores) for the prediction of HPC and poor neurologic outcome. (3) Results: The AUCs for R-scores alone to predict HPC and poor neurologic outcome were 0.76 and 0.81, respectively. Clinical parameters were used to build comparison models. For HPC prediction, variables including age, multiple IPH, subdural hemorrhage, Injury Severity Score (ISS), international normalized ratio (INR) and IPH volume taken together yielded an AUC of 0.74, which was significantly (p = 0.022) increased to 0.83 after incorporation of the R-score in a combined model. For poor neurologic outcome prediction, clinical variables of age, Glasgow Coma Scale, ISS, INR and IPH volume showed high predictability with an AUC of 0.92, and further incorporation of the R-score did not improve the AUC. (4) Conclusion: The results suggest that radiomics analysis of IPH lesions on initial CT images has the potential to predict HPC and poor neurologic outcome in traumatic IPH patients. The clinical and R-score combined model further improves the performance of HPC prediction.

17.
Front Oncol ; 12: 894696, 2022.
Article in English | MEDLINE | ID: mdl-35800059

ABSTRACT

Purpose: This project aimed to assess the significance of vascular endothelial growth factor (VEGF) and p53 for predicting progression-free survival (PFS) in patients with spinal giant cell tumor of bone (GCTB) and to construct models for predicting these two biomarkers based on clinical and computer tomography (CT) radiomics to identify high-risk patients for improving treatment. Material and Methods: A retrospective study was performed from April 2009 to January 2019. A total of 80 patients with spinal GCTB who underwent surgery in our institution were identified. VEGF and p53 expression and clinical and general imaging information were collected. Multivariate Cox regression models were used to verify the prognostic factors. The radiomics features were extracted from the regions of interest (ROIs) in preoperative CT, and then important features were selected by the SVM to build classification models, evaluated by 10-fold crossvalidation. The clinical variables were processed using the same method to build a conventional model for comparison. Results: The immunohistochemistry of 80 patients was obtained: 49 with high-VEGF and 31 with low-VEGF, 68 with wild-type p53, and 12 with mutant p53. p53 and VEGF were independent prognostic factors affecting PFS found in multivariate Cox regression analysis. For VEGF, the Spinal Instability Neoplastic Score (SINS) was greater in the high than low groups, p < 0.001. For p53, SINS (p = 0.030) and Enneking stage (p = 0.017) were higher in mutant than wild-type groups. The VEGF radiomics model built using 3 features achieved an area under the curve (AUC) of 0.88, and the p53 radiomics model built using 4 features had an AUC of 0.79. The conventional model built using SINS, and the Enneking stage had a slightly lower AUC of 0.81 for VEGF and 0.72 for p53. Conclusion: p53 and VEGF are associated with prognosis in patients with spinal GCTB, and the radiomics analysis based on preoperative CT provides a feasible method for the evaluation of these two biomarkers, which may aid in choosing better management strategies.

18.
Eur Radiol ; 32(10): 6608-6618, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35726099

ABSTRACT

OBJECTIVES: To evaluate the diagnostic performance of Kaiser score (KS) adjusted with the apparent diffusion coefficient (ADC) (KS+) and machine learning (ML) modeling. METHODS: A dataset of 402 malignant and 257 benign lesions was identified. Two radiologists assigned the KS. If a lesion with KS > 4 had ADC > 1.4 × 10-3 mm2/s, the KS was reduced by 4 to become KS+. In order to consider the full spectrum of ADC as a continuous variable, the KS and ADC values were used to train diagnostic models using 5 ML algorithms. The performance was evaluated using the ROC analysis, compared by the DeLong test. The sensitivity, specificity, and accuracy achieved using the threshold of KS > 4, KS+ > 4, and ADC ≤ 1.4 × 10-3 mm2/s were obtained and compared by the McNemar test. RESULTS: The ROC curves of KS, KS+, and all ML models had comparable AUC in the range of 0.883-0.921, significantly higher than that of ADC (0.837, p < 0.0001). The KS had sensitivity = 97.3% and specificity = 59.1%; and the KS+ had sensitivity = 95.5% with significantly improved specificity to 68.5% (p < 0.0001). However, when setting at the same sensitivity of 97.3%, KS+ could not improve specificity. In ML analysis, the logistic regression model had the best performance. At sensitivity = 97.3% and specificity = 65.3%, i.e., compared to KS, 16 false-positives may be avoided without affecting true cancer diagnosis (p = 0.0015). CONCLUSION: Using dichotomized ADC to modify KS to KS+ can improve specificity, but at the price of lowered sensitivity. Machine learning algorithms may be applied to consider the ADC as a continuous variable to build more accurate diagnostic models. KEY POINTS: • When using ADC to modify the Kaiser score to KS+, the diagnostic specificity according to the results of two independent readers was improved by 9.4-9.7%, at the price of slightly degraded sensitivity by 1.5-1.8%, and overall had improved accuracy by 2.6-2.9%. • When the KS and the continuous ADC values were combined to train models by machine learning algorithms, the diagnostic specificity achieved by the logistic regression model could be significantly improved from 59.1 to 65.3% (p = 0.0015), while maintaining at the high sensitivity of KS = 97.3%, and thus, the results demonstrated the potential of ML modeling to further evaluate the contribution of ADC. • When setting the sensitivity at the same levels, the modified KS+ and the original KS have comparable specificity; therefore, KS+ with consideration of ADC may not offer much practical help, and the original KS without ADC remains as an excellent robust diagnostic method.


Subject(s)
Breast Neoplasms , Diffusion Magnetic Resonance Imaging , Breast Neoplasms/diagnostic imaging , Diagnosis, Differential , Diffusion Magnetic Resonance Imaging/methods , Female , Humans , Machine Learning , Magnetic Resonance Imaging/methods , ROC Curve , Retrospective Studies , Sensitivity and Specificity
19.
Korean J Anesthesiol ; 75(6): 496-501, 2022 12.
Article in English | MEDLINE | ID: mdl-35700981

ABSTRACT

BACKGROUND: Previous studies have demonstrated that morphological changes in the suprascapular notch are closely associated with suprascapular nerve entrapment syndrome (SNES). Thus, we hypothesized that the suprascapular notch cross-sectional area (SSNCSA) could be a good diagnostic parameter to assess SNES. METHODS: We acquired suprascapular notch data from 10 patients with SNES and 10 healthy individuals who had undergone shoulder magnetic resonance imaging (S-MRI) and had no evidence of SNES. T2-weighted coronal magnetic resonance images were acquired from the shoulder. We analyzed the SSNCSA at the shoulder on S-MRI using our image-analysis program (INFINITT PACS). The SSNCSA was measured as the suprascapular notch, which was the most affected site in coronal S-MRI images. RESULTS: The mean SSNCSA was 64.50 ± 8.93 mm2 in the control group and 44.94 ± 10.40 mm2 in the SNES group. Patients with SNES had significantly lower SSNCSA (P < 0.01) than those in the control group. Receiver operating curve analysis showed that the best cut-off of the SSNCSA was 57.49 mm2, with 80.0% sensitivity, 80.0% specificity, and an area under the curve of 0.92 (95% CI [0.79, 1.00]). CONCLUSIONS: The SSNCSA was found to have acceptable diagnostic properties for detecting SNES. We hope that these results will help diagnose SNES objectively.


Subject(s)
Nerve Compression Syndromes , Scapula , Humans , Scapula/diagnostic imaging , Pilot Projects , Retrospective Studies , Nerve Compression Syndromes/diagnostic imaging , Nerve Compression Syndromes/pathology , Magnetic Resonance Imaging
20.
J Clin Neurosci ; 98: 154-161, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35180506

ABSTRACT

The aim of this study was to apply registration and three-dimensional (3D) display tools to assess the evolution of intraparenchymal hemorrhage (IPH) in patients with traumatic brain injury (TBI). We identified 109 TBI patients who had two computed tomography (CT) scans within 4 days retrospectively. The IPH was manually outlined. The registration was performed in 39 lesions from 29 patients with lesion volume < 1.5 cm on both baseline and follow-up CT. The center of mass (COM) of each lesion was calculated, and the distance between baseline and follow-up CT was used to evaluate the registration effect. The mean distances of COM before registration in the XYZ, XY, and YZ coordinates were 20.5 ± 10.2 mm, 17.8 ± 9.4 mm, and 15.9 ± 9.4 mm, respectively, which decreased significantly (p < 0.001) to 7.9 ± 4.9, 7.8 ± 5.0, and 6.1 ± 4.1 mm after registration. A 3D short video displaying the rendering view of all lesions in 34 randomly selected patients from baseline and follow-up scans were presented side-by-side for comparison. The detection rate of new IPH lesions increased in 3D videos (100%) as compared with axial CT slices (78.6-92.9%). A very high interrater agreement (k = 0.856) on perceiving IPH lesion progression upon viewing 3D video was noted, and the absolute volume increase was significantly higher (p < 0.001) for progressive lesions (median 7.36 cc) over non-progressive lesions (median 0.01 cc). Compared to patients with spontaneous hemorrhagic stroke, evaluation of multiple small traumatic hemorrhages in TBI is more challenging. The applied image analysis and visualization methods may provide helpful tools for comparing changes between serial CT scans.


Subject(s)
Brain Injuries, Traumatic , Imaging, Three-Dimensional , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Hemorrhage , Humans , Retrospective Studies , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...