Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(13)2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34201835

ABSTRACT

Potentiometric biosensors based on flexible arrayed silver paste electrode and copper-doped zinc oxide sensing film modified by iron-platinum nanoparticles (FePt NPs) are designed and manufactured to detect lactate in human. The sensing film is made of copper-doped zinc oxide (CZO) by a radio frequency (RF) sputtering system, and then modified by iron-platinum nanoparticles (FePt NPs). The surface morphology of copper-doped zinc oxide (CZO) is analyzed by scanning electron microscope (SEM). FePt NPs are analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The average sensitivity, response time, and interference effect of the lactate biosensors are analyzed by voltage-time (V-T) measurement system. The electrochemical impedance is analyzed by electrochemical impedance spectroscopy (EIS). The average sensitivity and linearity over the concentration range 0.2-5 mM are 25.32 mV/mM and 0.977 mV/mM, respectively. The response time of the lactate biosensor is 16 s, with excellent selectivity.

2.
Sensors (Basel) ; 20(4)2020 Feb 11.
Article in English | MEDLINE | ID: mdl-32054014

ABSTRACT

In this study, the potentiometric arrayed glucose biosensors, which were based on zinc oxide (ZnO) or aluminum-doped zinc oxide (AZO) sensing membranes, were fabricated by using screen-printing technology and a sputtering system, and graphene oxide (GO) and Nafion-glucose oxidase (GOx) were used to modify sensing membranes by using the drop-coating method. Next, the material properties were characterized by using a Raman spectrometer, a field-emission scanning electron microscope (FE-SEM), and a scanning probe microscope (SPM). The sensing characteristics of the glucose biosensors were measured by using the voltage-time (V-T) measurement system. Finally, electrochemical impedance spectroscopy (EIS) was conducted to analyze their charge transfer abilities. The results indicated that the average sensitivity of the glucose biosensor based on Nafion-GOx/GO/AZO was apparently higher than that of the glucose biosensor based on Nafion-GOx/GO/ZnO. In addition, the glucose biosensor based on Nafion-GOx/GO/AZO exhibited an excellent average sensitivity of 15.44 mV/mM and linearity of 0.997 over a narrow range of glucose concentration range, a response time of 26 s, a limit of detection (LOD) of 1.89 mM, and good reproducibility. In terms of the reversibility and stability, the hysteresis voltages (VH) were 3.96 mV and 2.42 mV. Additionally, the glucose biosensor also showed good anti-inference ability and reproducibility. According to these results, it is demonstrated that AZO is a promising material, which could be used to develop a reliable, simple, and low-cost potentiometric glucose biosensor.


Subject(s)
Biosensing Techniques/methods , Fluorocarbon Polymers/chemistry , Glucose Oxidase/metabolism , Glucose/analysis , Graphite/chemistry , Zinc Oxide/chemistry , Aluminum/chemistry , Dielectric Spectroscopy , Electrodes , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Glucose Oxidase/chemistry , Humans , Limit of Detection , Potentiometry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...