Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Proc Natl Acad Sci U S A ; 121(16): e2318935121, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38588421

ABSTRACT

Glucose is required for generating heat during cold-induced nonshivering thermogenesis in adipose tissue, but the regulatory mechanism is largely unknown. CREBZF has emerged as a critical mechanism for metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as nonalcoholic fatty liver disease (NAFLD). We investigated the roles of CREBZF in the control of thermogenesis and energy metabolism. Glucose induces CREBZF in human white adipose tissue (WAT) and inguinal WAT (iWAT) in mice. Lys208 acetylation modulated by transacetylase CREB-binding protein/p300 and deacetylase HDAC3 is required for glucose-induced reduction of proteasomal degradation and augmentation of protein stability of CREBZF. Glucose induces rectal temperature and thermogenesis in white adipose of control mice, which is further potentiated in adipose-specific CREBZF knockout (CREBZF FKO) mice. During cold exposure, CREBZF FKO mice display enhanced thermogenic gene expression, browning of iWAT, and adaptive thermogenesis. CREBZF associates with PGC-1α to repress thermogenic gene expression. Expression levels of CREBZF are negatively correlated with UCP1 in human adipose tissues and increased in WAT of obese ob/ob mice, which may underscore the potential role of CREBZF in the development of compromised thermogenic capability under hyperglycemic conditions. Our results reveal an important mechanism of glucose sensing and thermogenic inactivation through reversible acetylation.


Subject(s)
Adipose Tissue, Brown , Glucose , Mice , Humans , Animals , Glucose/metabolism , Adipose Tissue, Brown/metabolism , Acetylation , Adipose Tissue, White/metabolism , Energy Metabolism , Obesity/genetics , Obesity/metabolism , Thermogenesis/genetics , Mice, Inbred C57BL , Basic-Leucine Zipper Transcription Factors/metabolism
2.
Adv Sci (Weinh) ; 11(13): e2306685, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38286660

ABSTRACT

Chronic adipose tissue inflammation accompanied by macrophage accumulation and activation is implicated in the pathogenesis of insulin resistance and type 2 diabetes in humans. The transcriptional coregulator CREBZF is a key factor in hepatic metabolism, yet its role in modulating adipose tissue inflammation and type 2 diabetes remains elusive. The present study demonstrates that overnutrition-induced CREBZF links adipose tissue macrophage (ATM) proinflammatory activation to insulin resistance. CREBZF deficiency in macrophages, not in neutrophils, attenuates macrophage infiltration in adipose, proinflammatory activation, and hyperglycemia in diet-induced insulin-resistant mice. The coculture assays show that macrophage CREBZF deficiency improves insulin sensitivity in primary adipocytes and adipose tissue. Mechanistically, CREBZF competitively inhibits the binding of IκBα to p65, resulting in enhanced NF-κB activity. In addition, bromocriptine is identified as a small molecule inhibitor of CREBZF in macrophages, which suppresses the proinflammatory phenotype and improves metabolic dysfunction. Furthermore, CREBZF is highly expressed in ATM of obese humans and mice, which is positively correlated with proinflammatory genes and insulin resistance in humans. This study identifies a previously unknown role of CREBZF coupling ATM activation to systemic insulin resistance and type 2 diabetes.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Humans , Mice , Adipose Tissue/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Diabetes Mellitus, Type 2/metabolism , Inflammation/metabolism , Insulin Resistance/genetics , Macrophages/metabolism , Obesity/metabolism
3.
Proc Natl Acad Sci U S A ; 120(23): e2219419120, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37252972

ABSTRACT

Prolyl hydroxylase domain (PHD) enzymes change HIF activity according to oxygen signal; whether it is regulated by other physiological conditions remains largely unknown. Here, we report that PHD3 is induced by fasting and regulates hepatic gluconeogenesis through interaction and hydroxylation of CRTC2. Pro129 and Pro615 hydroxylation of CRTC2 following PHD3 activation is necessary for its association with cAMP-response element binding protein (CREB) and nuclear translocation, and enhanced binding to promoters of gluconeogenic genes by fasting or forskolin. CRTC2 hydroxylation-stimulated gluconeogenic gene expression is independent of SIK-mediated phosphorylation of CRTC2. Liver-specific knockout of PHD3 (PHD3 LKO) or prolyl hydroxylase-deficient knockin mice (PHD3 KI) show attenuated fasting gluconeogenic genes, glycemia, and hepatic capacity to produce glucose during fasting or fed with high-fat, high-sucrose diet. Importantly, Pro615 hydroxylation of CRTC2 by PHD3 is increased in livers of fasted mice, diet-induced insulin resistance or genetically obese ob/ob mice, and humans with diabetes. These findings increase our understanding of molecular mechanisms linking protein hydroxylation to gluconeogenesis and may offer therapeutic potential for treating excessive gluconeogenesis, hyperglycemia, and type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2 , Glucose , Humans , Mice , Animals , Glucose/metabolism , Proline/metabolism , Hydroxylation , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism , Cyclic AMP Response Element-Binding Protein/genetics , Cyclic AMP Response Element-Binding Protein/metabolism , Gluconeogenesis/physiology , Prolyl Hydroxylases/metabolism , Hepatocytes/metabolism , Mice, Inbred C57BL
4.
Hepatology ; 78(5): 1492-1505, 2023 11 01.
Article in English | MEDLINE | ID: mdl-36680394

ABSTRACT

BACKGROUND AND AIMS: NASH has emerged as a leading cause of chronic liver disease. However, the mechanisms that govern NASH fibrosis remain largely unknown. CREBZF is a CREB/ATF bZIP transcription factor that causes hepatic steatosis and metabolic defects in obesity. APPROACH AND RESULTS: Here, we show that CREBZF is a key mechanism of liver fibrosis checkpoint that promotes hepatocyte injury and exacerbates diet-induced NASH in mice. CREBZF deficiency attenuated liver injury, fibrosis, and inflammation in diet-induced mouse models of NASH. CREBZF increases HSC activation and fibrosis in a hepatocyte-autonomous manner by stimulating an extracellular matrix protein osteopontin, a key regulator of fibrosis. The inhibition of miR-6964-3p mediates CREBZF-induced production and secretion of osteopontin in hepatocytes. Adeno-associated virus -mediated rescue of osteopontin restored HSC activation, liver fibrosis, and NASH progression in CREBZF-deficient mice. Importantly, expression levels of CREBZF are increased in livers of diet-induced NASH mouse models and humans with NASH. CONCLUSIONS: Osteopontin signaling by CREBZF represents a previously unrecognized intrahepatic mechanism that triggers liver fibrosis and contributes to the severity of NASH.


Subject(s)
Non-alcoholic Fatty Liver Disease , Osteopontin , Animals , Humans , Mice , Basic-Leucine Zipper Transcription Factors/metabolism , Disease Models, Animal , Fatty Liver/genetics , Fatty Liver/metabolism , Fibrosis , Hepatocytes/metabolism , Hepatocytes/pathology , Liver/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Osteopontin/genetics , Osteopontin/metabolism
5.
Sheng Li Xue Bao ; 73(5): 761-771, 2021 Oct 25.
Article in Chinese | MEDLINE | ID: mdl-34708233

ABSTRACT

Nutrient overload-caused deregulation of glucose and lipid metabolism leads to insulin resistance and metabolic disorders, which increases the risk of several types of cancers. CREB/ATF bZIP transcription factor (CREBZF), a novel transcription factor of the ATF/CREB family, has emerged as a critical mechanism bridging the gap between metabolism and cell growth. CREBZF forms a heterodimer with other proteins and functions as a coregulator for gene expression. CREBZF deficiency in the liver attenuates hepatic steatosis in high fat diet-induced insulin-resistant mice, while the expression levels of CREBZF are increased in the livers of obese mice and humans with hepatic steatosis. Intriguingly, CREBZF also regulates cell proliferation and apoptosis via interaction with several transcription factors including STAT3, p53 and HCF-1. Knockout of CREBZF in hepatocytes results in enhanced cell cycle progression and proliferation capacity in mice. Here we highlight how the CREBZF signaling network contributes to the deregulation of metabolism and cell growth, and discuss the potential of targeting these molecules for the treatment of insulin resistance, diabetes, fatty liver disease and cancer.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Insulin Resistance , Liver , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Cell Cycle , Cell Proliferation , Diet, High-Fat , Hepatocytes , Lipid Metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Signal Transduction
6.
Cell Mol Gastroenterol Hepatol ; 12(3): 857-871, 2021.
Article in English | MEDLINE | ID: mdl-33989817

ABSTRACT

BACKGROUND AND AIMS: Butyric acid is an intestinal microbiota-produced short-chain fatty acid, which exerts salutary effects on alleviating nonalcoholic fatty liver disease (NAFLD). However, the underlying mechanism of butyrate on regulating hepatic lipid metabolism is largely unexplored. METHODS: A mouse model of NAFLD was induced with high-fat diet feeding, and sodium butyrate (NaB) intervention was initiated at the eighth week and lasted for 8 weeks. Hepatic steatosis was evaluated and metabolic pathways concerning lipid homeostasis were analyzed. RESULTS: Here, we report that administration of NaB by gavage once daily for 8 weeks causes an augmentation of insulin-induced gene (Insig) activity and inhibition of lipogenic gene in mice fed with high-fat diet. Mechanistically, NaB is sufficient to enhance the interaction between Insig and its upstream kinase AMP-activated protein kinase (AMPK). The stimulatory effects of NaB on Insig-1 activity are abolished in AMPKα1/α2 double knockout (AMPK-/-) mouse primary hepatocytes. Moreover, AMPK activation by NaB is mediated by LKB1, as evidenced by the observations showing NaB-mediated induction of phosphorylation of AMPK, and its downstream target acetyl-CoA carboxylase is diminished in LKB1-/- mouse embryonic fibroblasts. CONCLUSIONS: These studies indicate that NaB serves as a negative regulator of hepatic lipogenesis in NAFLD and that NaB attenuates hepatic steatosis and improves lipid profile and liver function largely through the activation of LKB1-AMPK-Insig signaling pathway. Therefore, NaB has therapeutic potential for treating NAFLD and related metabolic diseases.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Butyric Acid/pharmacology , Dietary Supplements , Gene Expression Regulation , Insulin/metabolism , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Diet, High-Fat , Disease Models, Animal , Gene Expression Regulation/drug effects , Hepatocytes/metabolism , Humans , Insulin/pharmacology , Lipid Metabolism/drug effects , Lipogenesis/drug effects , Lipogenesis/genetics , MAP Kinase Signaling System/drug effects , Male , Mice , Models, Biological , Non-alcoholic Fatty Liver Disease/pathology , Phosphorylation
7.
EBioMedicine ; 57: 102849, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32580141

ABSTRACT

BACKGROUND: Nonalcoholic fatty liver disease (NAFLD) is associated with altered production of secreted proteins. Increased understanding of secreted proteins could lead to improved prediction and treatment of NAFLD. Here, we aimed to discover novel secreted proteins in humans that are associated with hepatic fat content using unbiased proteomic profiling strategy, and how the identified Thbs1 modulates lipid metabolism and hepatic steatosis. METHOD: NAFLD patients were enrolled and treated with lifestyle intervention. Patients who underwent liver biopsy were enrolled for analyzing the correlation between circulating Thbs1 and liver steatosis. Mice were fed on high-fat, high-sucrose diet and treated with recombinant Thbs1. Primary hepatocytes isolated from CD36 knockout (CD36-/-) mice and their wild-type littermates (controls) were treated with glucose plus insulin for 24 h together with or without recombinant Thbs1. FINDING: Serum Thbs1 levels are increased in participants with NAFLD and positively associated with liver steatosis grades. Improvement of liver steatosis after lifestyle intervention was accompanied with significant reduction of serum Thbs1 levels. Pharmacological administration of recombinant human Thbs1 attenuates hepatic steatosis in diet-induced obese mice. Treatment with Thbs1 protein or stably overexpression of Thbs1 causes a significant reduction of lipid accumulation in primary hepatocytes or HepG2 cells exposed to high glucose plus insulin, suggesting that Thbs1 regulates lipid metabolism in a hepatocyte-autonomous manner. Mechanistically, Thbs1 inhibits cleavage and processing of SREBP-1, leading to a reduction of target lipogenic gene expression and hepatic steatosis. Inhibitory effects of Thbs1 on lipogenesis and triglyceride accumulation are abrogated in CD36 deficient primary hepatocytes exposed to high glucose plus insulin. Interestingly, beneficial effects of Thbs1 on lipid accumulation are observed in primary hepatocytes treated with a Thbs1 nonapeptide mimetic ABT-526. INTERPRETATION: Thbs1 is a biomarker for NAFLD in humans, and pharmacological and genetic approaches for the modulation of Thbs1 activity may have the therapeutic potential for treating hepatic steatosis. FUND: A full list of funding bodies that contributed to this study can be found in the Funding Sources section.


Subject(s)
Fatty Liver/genetics , Lipid Metabolism/genetics , Non-alcoholic Fatty Liver Disease/genetics , Proteomics , Thrombospondin 1/genetics , Animals , CD36 Antigens/genetics , Diet, High-Fat/adverse effects , Fatty Liver/diet therapy , Fatty Liver/metabolism , Fatty Liver/pathology , Hep G2 Cells , Hepatocytes/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Insulin Resistance/genetics , Lipogenesis/genetics , Liver/metabolism , Liver/pathology , Mice , Mice, Knockout , Non-alcoholic Fatty Liver Disease/diet therapy , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Peptide Fragments/pharmacology , Thrombospondin 1/pharmacology , Triglycerides/blood
8.
Food Nutr Res ; 642020.
Article in English | MEDLINE | ID: mdl-32110174

ABSTRACT

BACKGROUND: Recent evidence indicates that the inhibition of hepatocyte apoptosis is possible to develop a potential therapeutic strategy for nonalcoholic fatty liver disease (NAFLD). Our previous work suggested that purple sweet potato color (PSPC), a class of naturally occurring anthocyanins, effectively improved many features of high-fat diet (HFD)-induced NAFLD. However, whether PSPC ameliorates HFD-induced hepatocyte apoptosis has never been investigated. OBJECTIVE: Here we investigated the effects of PSPC on HFD-induced hepatic apoptosis and the mechanisms underlying these effects. DESIGN: Mice were divided into four groups: Control group, HFD group, HFD + PSPC group and PSPC group. PSPC was administered by daily oral gavage at doses of 700 mg/kg/day for 20 weeks. EX-527 (a SirT1-selective inhibitor) and Sirt1 siRNA were used to demonstrate the Sirt1 dependence of PSPC-mediated effects on apoptotic and survival signaling pathways in vivo and in vitro. RESULTS: Our results showed that PSPC reduced body weights, hepatic triglyceride contents, histopathological lesions and serum ALT levels in a mouse model of NAFLD induced by HFD. Furthermore, PSPC attenuated HFD-induced hepatocyte apoptosis ratio from 7.27 ± 0.92% to 1.79 ± 0.27% in mouse livers, which is insignificant compared with that of controls. Moreover, PSPC activated Sirt1 by boosting NAD+ level in HFD-treated mouse livers. Furthermore, PSPC promoted Sirt1-dependent suppression of P53-mediated apoptotic signaling and activation of Akt survival signaling pathway in HFD-treated mouse livers, which was confirmed by EX527 treatment. Moreover, Sirt1 knockdown abolished these ameliorative effects of PSPC on apoptosis and P53 acetylation and protein expression in PA-treated L02 cells. Ultimately, PSPC reduced Caspase-3 activation and Bax level, and elevated the Bcl-2 level in HFD-treated mouse livers. CONCLUSION: PSPC protected against HFD-induced hepatic apoptosis by promoting Sirt1- dependent inhibition of p53-apoptotic pathway and facilitation of Akt survival pathway. This study indicates that PSPC is a candidate for nutritional intervention of NAFLD.

9.
Int J Mol Sci ; 18(1)2016 Dec 25.
Article in English | MEDLINE | ID: mdl-28029143

ABSTRACT

Recent evidence suggests that troxerutin, a trihydroxyethylated derivative of natural bioflavonoid rutin, exhibits beneficial effects on diabetes-related symptoms. Here we investigated the effects of troxerutin on the enhancement of hepatic gluconeogenesis in high-fat diet (HFD)-treated mice and the mechanisms underlying these effects. Mice were divided into four groups: Control group, HFD group, HFD + Troxerutin group, and Troxerutin group. Troxerutin was treated by daily oral administration at doses of 150 mg/kg/day for 20 weeks. Tauroursodeoxycholic acid (TUDCA) was used to inhibit endoplasmic reticulum stress (ER stress). Our results showed that troxerutin effectively improved obesity and related metabolic parameters, and liver injuries in HFD-treated mouse. Furthermore, troxerutin significantly attenuated enhancement of hepatic gluconeogenesis in HFD-fed mouse. Moreover, troxerutin notably suppressed nuclear factor-κB (NF-κB) p65 transcriptional activation and release of inflammatory cytokines in HFD-treated mouse livers. Mechanismly, troxerutin dramatically decreased Nucleotide oligomerization domain (NOD) expression, as well as interaction between NOD1/2 with interacting protein-2 (RIP2), by abating oxidative stress-induced ER stress in HFD-treated mouse livers, which was confirmed by TUDCA treatment. These improvement effects of troxerutin on hepatic glucose disorders might be mediated by its anti-obesity effect. In conclusion, troxerutin markedly diminished HFD-induced enhancement of hepatic gluconeogenesis via its inhibitory effects on ER stress-mediated NOD activation and consequent inflammation, which might be mediated by its anti-obesity effect.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Gluconeogenesis , Hydroxyethylrutoside/analogs & derivatives , Hyperglycemia/metabolism , Liver/metabolism , Nod Signaling Adaptor Proteins/metabolism , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/therapeutic use , Diet, High-Fat/adverse effects , Endoplasmic Reticulum Stress , Hydroxyethylrutoside/administration & dosage , Hydroxyethylrutoside/pharmacology , Hydroxyethylrutoside/therapeutic use , Hyperglycemia/drug therapy , Hyperglycemia/etiology , Liver/drug effects , Male , Mice , Mice, Inbred ICR , NF-kappa B/genetics , NF-kappa B/metabolism , Oxidative Stress , Receptor-Interacting Protein Serine-Threonine Kinase 2 , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...