Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Dis ; 172: 105820, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35843448

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with growing major health impacts, particularly in countries with aging populations. The examination of neural circuit mechanisms in AD mouse models is a recent focus for identifying new AD treatment strategies. We hypothesize that age-progressive changes of both long-range and local hippocampal neural circuit connectivity occur in AD. Recent advancements in viral-genetic technologies provide new opportunities for semi-quantitative mapping of cell-type-specific neural circuit connections in AD mouse models. We applied a recently developed monosynaptic rabies tracing method to hippocampal neural circuit mapping studies in AD model mice to determine how local and global circuit connectivity to hippocampal CA1 excitatory neurons may be altered in the single APP knock-in (APP-KI) AD mouse model. To determine age-related AD progression, we measured circuit connectivity in age-matched littermate control and AD model mice at two different ages (3-4 vs. 10-11 months old). We quantitatively mapped the connectivity strengths of neural circuit inputs to hippocampal CA1 excitatory neurons from brain regions including hippocampal subregions, medial septum, subiculum and entorhinal cortex, comparing different age groups and genotypes. We focused on hippocampal CA1 because of its clear relationship with learning and memory and that the hippocampal formation shows clear neuropathological changes in human AD. Our results reveal alterations in circuit connectivity of hippocampal CA1 in AD model mice. Overall, we find weaker extrinsic CA1 input connectivity strengths in AD model mice compared with control mice, including sex differences of reduced subiculum to CA1 inputs in aged female AD mice compared with aged male AD mice. Unexpectedly, we find a connectivity pattern shift with an increased proportion of inputs from the CA3 region to CA1 excitatory neurons when comparing young and old AD model mice, as well as old wild-type mice and old AD model mice. These unexpected shifts in CA3-CA1 input proportions in this AD mouse model suggest the possibility that compensatory circuit increases may occur in response to connectivity losses in other parts of the hippocampal circuits. We expect that this work provides new insights into the neural circuit mechanisms of AD pathogenesis.


Subject(s)
Alzheimer Disease , Rabies virus , Aged , Alzheimer Disease/pathology , Animals , CA1 Region, Hippocampal/pathology , Disease Models, Animal , Entorhinal Cortex/pathology , Female , Hippocampus/pathology , Humans , Infant , Male , Mice , Mice, Transgenic
2.
Opt Express ; 28(24): 35708-35715, 2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33379681

ABSTRACT

We design, fabricate and analyze plasmon-enhanced LEDs with the tapered Ag structure that significantly increases plasmonic coupling efficiency at a coupling distance far beyond the penetration depth. The electroluminescence intensity showed a 16-fold increase compared with planar LEDs with a coupling distance of 100 nm. The enhanced coupling efficiency with large distance is originated from the accumulated SP energy at the metal conical tip and the missing momentum provided by the corrugated surface. Therefore, the SP-enhanced LED with tapered Ag structure can maintain a high luminous efficiency and a stable working state even with thick p-GaN layer, which also guarantees a high electrical performance. Our study paves the way for a practical implementation of SP-enhanced LEDs with excellent optical and electrical properties.

3.
Nanotechnology ; 31(44): 445202, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32674092

ABSTRACT

Well-aligned, lateral and vertical oriented nanoporous GaN was fabricated using the electrochemical etching procedure and its influence on the optical characteristics of ultraviolet-A multiple quantum well (MQW) structure was investigated. We used a MQW structure with a V-defect and n-Al0.1Ga0.9 N layer, which greatly improved the uniformity of vertical electrochemical etching. Compared to the as-grown MQW structure, the lateral and vertical oriented nanoporous MQW structures have 3.8-fold and 8.1-fold photoluminescence intensity enhancement and the full width at half maximum has been narrowed from 18.4 nm to 7.9 nm and 2.8 nm, respectively. The vertical oriented nanoporous MQW structure has a rectangular far-field emission pattern with uniform forward light distribution and the view angle of 85% intensity is 50°. This study provides an effective method for improving the light output and controlling the emission angle of GaN based light emitting devices, as well as a method for preparing well-aligned nanopores in semiconductors.

4.
Nanomaterials (Basel) ; 10(4)2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32326455

ABSTRACT

The microcave array with extreme large aspect ratio was fabricated on the p-GaN capping layer followed by Ag nanoparticles preparation. The coupling distance between the dual-wavelength InGaN/GaN multiple quantum wells and the localized surface plasmon resonance was carefully characterized in nanometer scale by scanning near-field optical microscopy. The effects of coupling distance and excitation power on the enhancement of photoluminescence were investigated. The penetration depth was measured in the range of 39-55 nm depending on the excitation density. At low excitation power density, the maximum enhancement of 103 was achieved at the optimum coupling distance of 25 nm. Time-resolved photoluminescence shows that the recombination life time was shortened from 5.86 to 1.47 ns by the introduction of Ag nanoparticle plasmon resonance.

5.
Nanomaterials (Basel) ; 9(4)2019 Apr 18.
Article in English | MEDLINE | ID: mdl-31003558

ABSTRACT

The size of the V-defects in the GaN/InGaN-based quantum wells blue light-emitting diode (LED) was intentionally modified from 50 nm to 300 nm. High resolution photoluminescence and electroluminescence of a single large V-defect were investigated by near-field scanning optical microscopy. The current distribution along the {10-11} facets of the large defect was measured by conductive atomic force microscopy. Nearly 20 times the current injection and dominant emission from bottom quantum wells were found in the V-defect compared to its vicinity. Such enhanced current injection into the bottom part of quantum wells through V-defect results in higher light output power. Reduced external quantum efficiency droops were achieved due to more uniform carrier distribution. The un-encapsulated fabricated chip shows light output power of 172.5 mW and 201.7 mW at 400 mA, and external quantum efficiency drop of 22.3% and 15.4% for the sample without and with large V-defects, respectively. Modified V-defects provide a simple and effective approach to suppress the efficiency droop problem that occurs at high current injection, while improving overall quantum efficiency.

6.
Opt Express ; 26(2): 1817-1824, 2018 Jan 22.
Article in English | MEDLINE | ID: mdl-29402050

ABSTRACT

We demonstrated a method to obtain super flexible LEDs, based on high quality pyramid arrays grown directly on sapphire substrates. Laser lift-off (LLO) and dual transfer processes were applied to transfer pyramid arrays face up onto the flexible substrates, which is more efficient than back light emission. Ag grid and Ag nanowires were employed as the electrical connection. No significant performance reduction appeared until the device reached a curvature radius of 0.5 mm. The performance reduction results from cracks appearing at the junction of the Ag grid, which can be improved by replacing the Ag grid with a strip electrode.

7.
Opt Express ; 25(15): 18072-18080, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28789297

ABSTRACT

In this work, we have successfully fabricated microtubes by strain-induced self-rolling of a InGaN/GaN quantum wells nanomembrane. Freestanding quantum wells microtubes, with a diameter of 6 µm and wall thickness of 50 nm, are formed when the coherently strained InGaN/GaN quantum wells heterostructure is selectively released from the hosting substrate. Periodic oscillations due to whispering-gallery modes resonance were found superimposed on photoluminescence spectra even at low optical excitation power. With increasing pumping power density, the microtube is characterized by a stimulated emission with a threshold as low as 415 kW/cm2. Such emission shows predominant TM polarization parallel to the microtube axis.

8.
Opt Express ; 24(15): 17522-31, 2016 Jul 25.
Article in English | MEDLINE | ID: mdl-27464198

ABSTRACT

We present a facile fabrication process to directly fabricate cone-shaped microwells arrays on single crystal Y3Al5O12:Ce3+ (YAG:Ce) ceramic phosphor platelets (CPPs) by short-pulse laser direct patterning. Compared to unpatterned YAG:Ce CPP with smooth surface, the forward-to-total ratio of emission photons of patterned YAG:Ce CPPs was enhanced from 53.2% up to 78.2%, and the total emission within 4-π degree is 6% higher. The fabricated patterns are also beneficial in increasing the color conversion efficiency of YAG:Ce CPPs by 7.6%. The patterned YAG:Ce CPPs display much better correlated color temperature (CCT) uniformity under varied currents. The angular correlated color temperature uniformity (ACU) of patterned YAG:Ce CPPs reaches as high as 0.933 compared to 0.730 of the unpatterned one. These results suggest that laser patterning of YAG:Ce CPP could effectively manipulate its luminance, chromaticity and illumination pattern, which may lead to further technological advancements for diversified applications of film-type CPPs in highly efficient white LEDs.

SELECTION OF CITATIONS
SEARCH DETAIL
...