Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2831: 81-95, 2024.
Article in English | MEDLINE | ID: mdl-39134845

ABSTRACT

During the development of mammalian brains, pyramidal neurons in the cerebral cortex form highly organized six layers with different functions. These neurons undergo developmental processes such as axon extension, dendrite outgrowth, and synapse formation. A proper integration of the neuronal connectivity through dynamic changes of dendritic branches and spines is required for learning and memory. Disruption of these crucial developmental processes is associated with many neurodevelopmental and neurodegenerative disorders. To investigate the complex dendritic architecture, several useful staining tools and genetic methods to label neurons have been well established. Monitoring the dynamics of dendritic spine in a single neuron is still a challenging task. Here, we provide a methodology that combines in vivo two-photon brain imaging and in utero electroporation, which sparsely labels cortical neurons with fluorescent proteins. This protocol may help elucidate the dynamics of microstructure and neural complexity in living rodents under normal and disease conditions.


Subject(s)
Neurons , Animals , Mice , Neurons/cytology , Neurons/metabolism , Electroporation/methods , Microscopy, Fluorescence, Multiphoton/methods , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Pyramidal Cells/metabolism , Pyramidal Cells/cytology , Female , Cerebral Cortex/cytology , Dendrites/metabolism
2.
Neuropathol Appl Neurobiol ; 49(2): e12890, 2023 04.
Article in English | MEDLINE | ID: mdl-36765387

ABSTRACT

AIMS: Muscleblind-like 2 (MBNL2) plays a crucial role in regulating alternative splicing during development and mouse loss of MBNL2 recapitulates brain phenotypes in myotonic dystrophy (DM). However, the mechanisms underlying DM neuropathogenesis during brain development remain unclear. In this study, we aim to investigate the impact of MBNL2 elimination on neuronal development by Mbnl2 conditional knockout (CKO) mouse models. METHODS: To create Mbnl2 knockout neurons, cDNA encoding Cre-recombinase was delivered into neural progenitors of Mbnl2flox/flox mouse brains by in utero electroporation. The morphologies and dynamics of dendritic spines were monitored by confocal and two-photon microscopy in brain slices and live animals from the neonatal period into adulthood. To investigate the underlying molecular mechanism, we further detected the changes in the splicing and molecular interactions of proteins associated with spinogenesis. RESULTS: We found that Mbnl2 knockout in cortical neurons decreased dendritic spine density and dynamics in adolescent mice. Mbnl2 ablation caused the adducin 1 (ADD1) isoform to switch from adult to fetal with a frameshift, and the truncated ADD1 failed to interact with alpha-II spectrin (SPTAN1), a critical protein for spinogenesis. In addition, expression of ADD1 adult isoform compensated for the reduced dendritic spine density in cortical neurons deprived of MBNL2. CONCLUSION: MBNL2 plays a critical role in maintaining the dynamics and homeostasis of dendritic spines in the developing brain. Mis-splicing of downstream ADD1 may account for the alterations and contribute to the DM brain pathogenesis.


Subject(s)
Dendritic Spines , Myotonic Dystrophy , Animals , Mice , Brain/pathology , Dendritic Spines/metabolism , Dendritic Spines/pathology , Myotonic Dystrophy/genetics , Protein Isoforms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL