Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 21(1): 175-181, 2021 Jan 13.
Article in English | MEDLINE | ID: mdl-33264014

ABSTRACT

Multiferroic tunnel junctions (MFTJs) have aroused significant interest due to their functional properties useful for nonvolatile memory devices. So far, however, all of the existing MFTJs have been based on perovskite-oxide heterostructures limited by a relatively high resistance-area (RA) product unfavorable for practical applications. Here, using first-principles calculations, we explore spin-dependent transport properties of van der Waals (vdW) MFTJs which consist of two-dimensional (2D) ferromagnetic FenGeTe2 (n = 3, 4, 5) electrodes and 2D ferroelectric In2Se3 barrier layers. We demonstrate that such FemGeTe2/In2Se3/FenGeTe2 (m, n = 3, 4, 5; m ≠ n) MFTJs exhibit multiple nonvolatile resistance states associated with different polarization orientation of the ferroelectric In2Se3 layer and magnetization alignment of the two ferromagnetic FenGeTe2 layers. We find a remarkably low RA product (less than 1 Ω·µm2) which makes the proposed vdW MFTJs superior to the conventional MFTJs in terms of their promise for nonvolatile memory applications.

2.
J Phys Condens Matter ; 32(45): 454001, 2020 Jul 17.
Article in English | MEDLINE | ID: mdl-32679571

ABSTRACT

The development of ultralow power and high density nonvolatile magnetic random access memory stimulates the search for promising materials in magnetic tunnel junction with large voltage-controlled magnetic anisotropy (VCMA) efficiency. In this work, we investigate the 4d and 5d transition metal interlayer effect on perpendicular magnetic anisotropy (PMA) and VCMA at Fe/MgO interface by using first-principles calculations. Large PMA more than 11 mJ m-2 is found at Fe/MgO interface with Pt insertion layer and the mechanism for PMA is clarified based on the second order perturbation theory. Furthermore, we find that the magnitude and the sign of VCMA efficiency are varied by introducing different insertions at Fe/MgO interface. The Re and Os interlayers lead to a sizable increase in both of the PMA and the VCMA coefficient. Our findings may further emphasize the essential importance of the interface structure on PMA and VCMA and may offer new material platforms for low-power consumption spintronic devices.

3.
Nano Lett ; 19(8): 5133-5139, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31276417

ABSTRACT

van der Waals (vdW) heterostructures, stacking different two-dimensional materials, have opened up unprecedented opportunities to explore new physics and device concepts. Especially interesting are recently discovered two-dimensional magnetic vdW materials, providing new paradigms for spintronic applications. Here, using density functional theory (DFT) calculations, we investigate the spin-dependent electronic transport across vdW magnetic tunnel junctions (MTJs) composed of Fe3GeTe2 ferromagnetic electrodes and a graphene or hexagonal boron nitride (h-BN) spacer layer. For both types of junctions, we find that the junction resistance changes by thousands of percent when the magnetization of the electrodes is switched from parallel to antiparallel. Such a giant tunneling magnetoresistance (TMR) effect is driven by dissimilar electronic structure of the two spin-conducting channels in Fe3GeTe2, resulting in a mismatch between the incoming and outgoing Bloch states in the electrodes and thus suppressed transmission for an antiparallel-aligned MTJ. The vdW bonding between electrodes and a spacer layer makes this result virtually independent of the type of the spacer layer, making the predicted giant TMR effect robust with respect to strain, interface distance, and other parameters, which may vary in the experiment. We hope that our results will further stimulate experimental studies of vdW MTJs and pave the way for their applications in spintronics.

4.
Phys Chem Chem Phys ; 17(36): 23489-95, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26293350

ABSTRACT

In this paper, BiOI@(BiO)2CO3 facet coupling heterostructures were synthesized via exfoliation and ion exchange, and characterized by X-ray diffraction (XRD) patterns, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), UV-vis diffuse reflectance spectra (DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectra and valence-band XPS spectra. With the reaction time increasing, more BiOI can be transformed to (BiO)2CO3, and BiOI@(BiO)2CO3 facet coupling heterostructures were obtained. The photocatalytic results showed that BiOI@(BiO)2CO3 displays much higher photocatalytic activity than BiOI and (BiO)2CO3 under visible-light. The photocatalytic mechanism study revealed that BiOI@(BiO)2CO3 has strong adsorption for RhB molecules due to the ultrathin nanosheets and higher BET, and displays better separation efficiency of photoinduced charge carriers and higher photocurrent due to the {001}/{001} facet coupling.

5.
Nanotechnology ; 22(28): 285609, 2011 Jul 15.
Article in English | MEDLINE | ID: mdl-21659687

ABSTRACT

Electrospinning is a convenient and versatile method for fabricating different kinds of one-dimensional nanostructures such as nanofibres, nanotubes and nanobelts. Environmental parameters have a great influence on the electrospinning nanostructure. Here we report a new method to fabricate hafnium oxide (HfO(2)) nanobelts. HfO(2) nanobelts were prepared by electrospinning a sol-gel solution with the implementation of heating and subsequent calcination treatment. We investigate the temperature dependence of the products by scanning electron microscopy (SEM), transmission electron microscopy (TEM), selected area electron diffraction (SAED), and energy-dispersive x-ray (EDX) spectroscopy. The heating temperature of spinning ambient is found to be crucial to the formation of HfO(2) nanobelts. By tuning the temperature, the morphological transformation of HfO(2) from nanowires to nanobelts was achieved. It was found that the rapid evaporation of solvent played an important role in the formation process of HfO(2) nanobelts. It is shown that nanobelts can only be obtained with the temperature higher than 50 °C and they are in the high quality monoclinic phase. A possible growth mechanism of the nanobelts based on phase separation is proposed. The enhanced photoluminescence (PL) of HfO(2):Eu(3+) nanobelts is also illustrated.

6.
Nanoscale Res Lett ; 5(9): 1418-1423, 2010 Jun 01.
Article in English | MEDLINE | ID: mdl-20730130

ABSTRACT

ZnO/HfO(2):Eu nanocables were prepared by radio frequency sputtering with electrospun ZnO nanofibers as cores. The well-crystallized ZnO/HfO(2):Eu nanocables showed a uniform intact core-shell structure, which consisted of a hexagonal ZnO core and a monoclinic HfO(2) shell. The photoluminescence properties of the samples were characterized. A white-light band emission consisted of blue, green, and red emissions was observed in the nanocables. The blue and green emissions can be attributed to the zinc vacancy and oxygen vacancy defects in ZnO/HfO(2):Eu nanocables, and the yellow-red emissions are derived from the inner 4f-shell transitions of corresponding Eu(3+) ions in HfO(2):Eu shells. Enhanced white-light emission was observed in the nanocables. The enhancement of the emission is ascribed to the structural changes after coaxial synthesis.

SELECTION OF CITATIONS
SEARCH DETAIL