Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Publication year range
1.
bioRxiv ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39071354

ABSTRACT

We addressed the question of mitochondrial lactate metabolism using genetically-encoded sensors. The organelle was found to contain a dynamic lactate pool that leads to dose- and time-dependent protein lactylation. In neurons, mitochondrial lactate reported blood lactate levels with high fidelity. The exchange of lactate across the inner mitochondrial membrane was found to be mediated by a high affinity H+-coupled transport system involving the mitochondrial pyruvate carrier MPC. Assessment of electron transport chain activity and determination of lactate flux showed that mitochondria are tonic lactate producers, a phenomenon driven by energization and stimulated by hypoxia. We conclude that an overflow mechanism caps the redox level of mitochondria, while saving energy in the form of lactate.

2.
Cells ; 9(4)2020 04 23.
Article in English | MEDLINE | ID: mdl-32340145

ABSTRACT

Diabetic nephropathy (DN) is considered the main cause of kidney disease in which myofibroblasts lead to renal fibrosis. Macrophages were recently identified as the major source of myofibroblasts in a process known as macrophage-myofibroblast transition (MMT). Adenosine levels increase during DN and in vivo administration of MRS1754, an antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerular fibrosis (glomerulosclerosis). We aimed to investigate the association between A2BAR and MMT in glomerulosclerosis during DN. Kidneys/glomeruli of non-diabetic, diabetic, and MRS1754-treated diabetic (DM+MRS1754) rats were processed for histopathologic, transcriptomic, flow cytometry, and cellular in vitro analyses. Macrophages were used for in vitro cell migration/transmigration assays and MMT studies. In vivo MRS1754 treatment attenuated the clinical and histopathological signs of glomerulosclerosis in DN rats. Transcriptomic analysis demonstrated a decrease in chemokine-chemoattractants/cell-adhesion genes of monocytes/macrophages in DM+MRS1754 glomeruli. The number of intraglomerular infiltrated macrophages and MMT cells increased in diabetic rats. This was reverted by MRS1754 treatment. In vitro cell migration/transmigration decreased in macrophages treated with MRS1754. Human macrophages cultured with adenosine and/or TGF-ß induced MMT, a process which was reduced by MRS1754. We concluded that pharmacologic blockade of A2BAR attenuated some clinical signs of renal dysfunction and glomerulosclerosis, and decreased intraglomerular macrophage infiltration and MMT in DN rats.


Subject(s)
Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Macrophages/pathology , Monocytes/pathology , Myofibroblasts/pathology , Receptor, Adenosine A2B/metabolism , Acetamides/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Animals , Biomarkers/metabolism , Cell Adhesion Molecules/metabolism , Chemokines/metabolism , Chemotactic Factors/pharmacology , Fibrosis , Humans , Kidney Glomerulus/drug effects , Kidney Glomerulus/pathology , Macrophages/drug effects , Macrophages/metabolism , Male , Monocytes/drug effects , Monocytes/metabolism , Myofibroblasts/drug effects , Myofibroblasts/metabolism , Purines/pharmacology , Rats, Sprague-Dawley , Transcription, Genetic/drug effects
4.
Int J Mol Sci ; 20(18)2019 Sep 13.
Article in English | MEDLINE | ID: mdl-31540220

ABSTRACT

Diabetic nephropathy (DN) is the main cause of end-stage renal disease, which remains incurable. The progression of DN is associated with progressive and irreversible renal fibrosis and also high levels of adenosine. Our aim was to evaluate the effects of ADORA3 antagonism on renal injury in streptozotocin-induced diabetic rats. An ADORA3 antagonist that was administered in diabetic rats greatly inhibited the levels of inflammatory interleukins IL-1ß and IL-18, meanwhile when adenosine deaminase was administered, there was a non-selective attenuation of the inflammatory mediators IL-1ß, IL-18, IL-6, and induction of IL-10. The ADORA3 antagonist attenuated the high glucose-induced activation of caspase 1 in HK2 cells in vitro. Additionally, ADORA3 antagonisms blocked the increase in caspase 1 and the nuclear localization of NFκB in the renal tubular epithelium of diabetic rats, both events that are involved in regulating the production and activation of IL-1ß and IL-18. The effects of the A3 receptor antagonist resulted in the attenuation of kidney injury, as evidenced by decreased levels of the pro-fibrotic marker α-SMA at histological levels and the restoration of proteinuria in diabetic rats. We conclude that ADORA3 antagonism represents a potential therapeutic target that mechanistically works through the selective blockade of the NLRP3 inflammasome.


Subject(s)
Adenosine A3 Receptor Antagonists/administration & dosage , Caspase 1/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetic Nephropathies/prevention & control , Adenosine A3 Receptor Antagonists/pharmacology , Adenosine Deaminase/adverse effects , Animals , Cell Line , Diabetes Mellitus, Experimental/enzymology , Diabetic Nephropathies/chemically induced , Disease Models, Animal , Gene Expression Regulation/drug effects , Humans , Injections, Intraperitoneal , Interleukin-18/metabolism , Interleukin-1beta/metabolism , Kidney Tubules/drug effects , Kidney Tubules/enzymology , Male , Rats , Streptozocin
5.
Sci Rep ; 7(1): 9439, 2017 08 25.
Article in English | MEDLINE | ID: mdl-28842605

ABSTRACT

Deficient insulin signaling is a key event mediating diabetic glomerulopathy. Additionally, diabetic kidney disease has been related to increased levels of adenosine. Therefore, we tested a link between insulin deficiency and dysregulated activity of the equilibrative nucleoside transporters (ENTs) responsible for controlling extracellular levels of adenosine. In ex vivo glomeruli, high D-glucose decreased nucleoside uptake mediated by ENT1 and ENT2 transporters, resulting in augmented extracellular levels of adenosine. This condition was reversed by exposure to insulin. Particularly, insulin through insulin receptor/PI3K pathway markedly upregulated ENT2 uptake activity to restores the extracellular basal level of adenosine. Using primary cultured rat podocytes as a cellular model, we found insulin was able to increase ENT2 maximal velocity of transport. Also, PI3K activity was necessary to maintain ENT2 protein levels in the long term. In glomeruli of streptozotocin-induced diabetic rats, insulin deficiency leads to decreased activity of ENT2 and chronically increased extracellular levels of adenosine. Treatment of diabetic rats with adenosine deaminase attenuated both the glomerular loss of nephrin and proteinuria. In conclusion, we evidenced ENT2 as a target of insulin signaling and sensitive to dysregulation in diabetes, leading to chronically increased extracellular adenosine levels and thereby setting conditions conducive to kidney injury.


Subject(s)
Adenosine/metabolism , Diabetic Nephropathies/genetics , Diabetic Nephropathies/metabolism , Equilibrative-Nucleoside Transporter 2/genetics , Insulin/metabolism , Animals , Biopsy , Diabetic Nephropathies/pathology , Equilibrative-Nucleoside Transporter 2/metabolism , Extracellular Space/metabolism , Gene Expression Regulation , Kinetics , Male , Phosphatidylinositol 3-Kinases/metabolism , Rats , Signal Transduction
6.
Invest Clin ; 56(1): 74-99, 2015 Mar.
Article in Spanish | MEDLINE | ID: mdl-25920188

ABSTRACT

Inflammation is a rapid biologic response of the immune system in vascular tissues, directed to eliminate stimuli capable of causing damage and begin the process of repair. The macromolecular complexes known as "inflammasomes" are formed by a receptor, either NOD (NLR) or ALR, the receptor absent in melanoma 2 (AIM2). In addition, the inflammasome is formed by the speck-like protein associated to apoptosis (ASC) and procaspase-1, that may be activated by variations in the ionic and intracellular and extracellular ATP concentrations; and the loss of stabilization of the fagolisosomme by internalization of insoluble crystals and redox mechanisms. As a result, there is activation of the molecular platform and the processing of inflammatory prointerleukins to their active forms. There are two modalities of activation of the inflammasome: canonical and non-canonical, both capable of generating effector responses. Recent data associate NLRP 3, IL-1ß and IL-18 in the pathogenesis of a variety of diseases, including atherosclerosis, type II diabetes, hyperhomocysteinemia, gout, malaria and hypertension. The inflammasome cascade is emerging as a new chemotherapeutic target in these diseases. In this review we shall discuss the mechanisms of activation and regulation of the inflammasome that stimulate, modulate and resolve inflammation.


Subject(s)
Inflammasomes/physiology , Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , Carrier Proteins/physiology , Cytokines/physiology , Humans , NLR Family, Pyrin Domain-Containing 3 Protein , NLR Proteins
7.
Invest. clín ; Invest. clín;56(1): 74-99, mar. 2015. ilus, graf
Article in Spanish | LILACS | ID: biblio-841069

ABSTRACT

La inflamación es una respuesta biológica rápida del sistema inmune en tejidos vasculares, dirigida a eliminar estímulos capaces de producir daño y a iniciar la curación y la reparación. Los complejos macromoleculares denominados inflamasomas están constituidos por un receptor NOD (NLR), un receptor de AIM2 (ausente en melanoma 2) el ALR, la proteína tipo punto asociada a apoptosis (ASC) y la procaspasa-1, los cuales pueden ser activados por variación en la concentración iónica y de ATP intracelular y extracelular, por desestabilización del fagolisosoma, por internalización de cristales insolubles y por mecanismos de oxidoreducción, lo cual permitirá la activación de la plataforma molecular y el consiguiente procesamiento de las prointerleuquinas inflamatorias a sus formas activas. En la actualidad existen dos nodos de señalización utilizados por los inflamasomas: canónica y no canónica para generar respuestas efectoras. Datos recientes vinculan al inflamasoma NLRP3, la IL-1b y a la IL-18, en el desarrollo y evolución de enfermedades tales como: ateroesclerosis, diabetes tipo II, hiperhomocisteinemia, gota, malaria e hipertensión arterial e identificaron esta cascada, como un blanco quimioterapéutico ideal para la prevención de estas patologías. En esta revisión se discutirán los mecanismos de activación y regulación del inflamasoma que estimulan, modulan y resuelven los procesos inflamatorios.


Inflammation is a rapid biologic response of the immune system in vascular tissues, directed to eliminate stimuli capable of causing damage and begin the process of repair. The macromolecular complexes known as “inflammasomes” are formed by a receptor, either NOD (NLR) or ALR, the receptor absent in melanoma 2 (AIM2). In addition, the inflammasome is formed by the speck-like protein associated to apoptosis (ASC) and procaspase-1, that may be activated by variations in the ionic and intracellular and extracellular ATP concentrations; and the loss of stabilization of the fagolisosomme by internalization of insoluble crystals and redox mechanisms. As a result, there is activation of the molecular platform and the processing of inflammatory prointerleukins to their active forms. There are two modalities of activation of the inflammasome: canonical and non-canonical, both capable of generating effector responses. Recent data associate NLRP 3, IL-1b and IL-18 in the pathogenesis of a variety of diseases, including atherosclerosis, type II diabetes, hyperhomocysteinemia, gout, malaria and hypertension. The inflammasome cascade is emerging as a new chemotherapeutic target in these diseases. In this review we shall discuss the mechanisms of activation and regulation of the inflammasome that stimulate, modulate and resolve inflammation.


Subject(s)
Humans , Inflammasomes/physiology , Carrier Proteins/physiology , Cytokines/physiology , Adaptor Proteins, Signal Transducing/physiology , Apoptosis Regulatory Proteins/physiology , NLR Proteins , NLR Family, Pyrin Domain-Containing 3 Protein
SELECTION OF CITATIONS
SEARCH DETAIL