Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
1.
Neurosurg Focus ; 56(5): E9, 2024 May.
Article in English | MEDLINE | ID: mdl-38691864

ABSTRACT

OBJECTIVE: Chordomas are rare tumors of the skull base and spine believed to arise from the vestiges of the embryonic notochord. These tumors are locally aggressive and frequently recur following resection and adjuvant radiotherapy. Proton therapy has been introduced as a tissue-sparing option because of the higher level of precision that proton-beam techniques offer compared with traditional photon radiotherapy. This study aimed to compare recurrence in patients with chordomas receiving proton versus photon radiotherapy following resection by applying tree-based machine learning models. METHODS: The clinical records of all patients treated with resection followed by adjuvant proton or photon radiotherapy for chordoma at Mayo Clinic were reviewed. Patient demographics, type of surgery and radiotherapy, tumor recurrence, and other variables were extracted. Decision tree classifiers were trained and tested to predict long-term recurrence based on unseen data using an 80/20 split. RESULTS: Fifty-three patients with a mean ± SD age of 55.2 ± 13.4 years receiving surgery and adjuvant proton or photon therapy to treat chordoma were identified; most patients were male. Gross-total resection was achieved in 54.7% of cases. Proton therapy was the most common adjuvant radiotherapy (84.9%), followed by conventional or external-beam radiation therapy (9.4%) and stereotactic radiosurgery (5.7%). Patients receiving proton therapy exhibited a 40% likelihood of having recurrence, significantly lower than the 88% likelihood observed in those treated with nonproton therapy. This was confirmed on logistic regression analysis adjusted for extent of tumor resection and tumor location, which revealed that proton adjuvant radiotherapy was associated with a decreased risk of recurrence (OR 0.1, 95% CI 0.01-0.71; p = 0.047) compared with photon therapy. The decision tree algorithm predicted recurrence with an accuracy of 90% (95% CI 55.5%-99.8%), with the lowest risk of recurrence observed in patients receiving gross-total resection with adjuvant proton therapy (23%). CONCLUSIONS: Following resection, adjuvant proton therapy was associated with a lower risk of chordoma recurrence compared with photon therapy. The described machine learning models were able to predict tumor progression based on the extent of tumor resection and adjuvant radiotherapy modality used.


Subject(s)
Chordoma , Neoplasm Recurrence, Local , Photons , Proton Therapy , Spinal Neoplasms , Humans , Chordoma/radiotherapy , Chordoma/surgery , Male , Female , Middle Aged , Neoplasm Recurrence, Local/radiotherapy , Proton Therapy/methods , Radiotherapy, Adjuvant/methods , Adult , Aged , Spinal Neoplasms/radiotherapy , Spinal Neoplasms/surgery , Photons/therapeutic use , Retrospective Studies , Treatment Outcome
2.
bioRxiv ; 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38562714

ABSTRACT

Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3 mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We applied an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in human and mice. We unexpectedly discovered an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts were altered in Shank3 mutant mice and postmortem brains tissues from individuals with ASD. The enhanced SHANK3 transcriptome significantly improved the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest the stochastic transcription of genome associated with SHANK family genes.

3.
Mayo Clin Proc ; 99(2): 229-240, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309935

ABSTRACT

OBJECTIVE: To establish a neurologic disorder-driven biospecimen repository to bridge the operating room with the basic science laboratory and to generate a feedback cycle of increased institutional and national collaborations, federal funding, and human clinical trials. METHODS: Patients were prospectively enrolled from April 2017 to July 2022. Tissue, blood, cerebrospinal fluid, bone marrow aspirate, and adipose tissue were collected whenever surgically safe. Detailed clinical, imaging, and surgical information was collected. Neoplastic and nonneoplastic samples were categorized and diagnosed in accordance with current World Health Organization classifications and current standard practices for surgical pathology at the time of surgery. RESULTS: A total of 11,700 different specimens from 813 unique patients have been collected, with 14.2% and 8.5% of patients representing ethnic and racial minorities, respectively. These include samples from a total of 463 unique patients with a primary central nervous system tumor, 88 with metastasis to the central nervous system, and 262 with nonneoplastic diagnoses. Cerebrospinal fluid and adipose tissue dedicated banks with samples from 130 and 16 unique patients, respectively, have also been established. Translational efforts have led to 42 new active basic research projects; 4 completed and 6 active National Institutes of Health-funded projects; and 2 investigational new drug and 5 potential Food and Drug Administration-approved phase 0/1 human clinical trials, including 2 investigator initiated and 3 industry sponsored. CONCLUSION: We established a comprehensive biobank with detailed notation with broad potential that has helped us to transform our practice of research and patient care and allowed us to grow in research and clinical trials in addition to providing a source of tissue for new discoveries.


Subject(s)
Biological Specimen Banks , Operating Rooms , Humans
4.
NPJ Microgravity ; 9(1): 92, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110398

ABSTRACT

The emerging arena of space exploration has created opportunities to study cancer cell biology in the environments of microgravity and hypergravity. Studying cellular behavior in altered gravity conditions has allowed researchers to make observations of cell function that would otherwise remain unnoticed. The patient-derived QNS108 brain tumor initiating cell line (BTIC), isolated from glioblastoma (GBM) tissue, was launched on a suborbital, parabolic rocket flight conducted by EXOS Aerospace Systems & Technologies. All biologicals and appropriate ground controls were secured post-launch and transported back to our research facility. Cells from the rocket-flight and ground-based controls were isolated from the culture containers and expanded on adherent flasks for two weeks. In vitro migration, proliferation, and stemness assays were performed. Following cell expansion, male nude mice were intracranially injected with either ground-control (GC) or rocket-flight (RF) exposed cells to assess tumorigenic capacity (n = 5 per group). Patient-derived QNS108 BTICs exposed to RF displayed more aggressive tumor growth than the GC cells in vitro and in vivo. RF cells showed significantly higher migration (p < 0.0000) and stemness profiles (p < 0.01) when compared to GC cells. Further, RF cells, when implanted in vivo in the brain of rodents had larger tumor-associated cystic growth areas (p = 0.00029) and decreased survival (p = 0.0172) as compared to those animals that had GC cells implanted.

5.
J Neurooncol ; 164(2): 287-298, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37698707

ABSTRACT

BACKGROUND AND OBJECTIVE: Awake craniotomy (AC) is a valuable technique for surgical interventions in eloquent areas, but its adoption in low- and middle-income countries faces challenges like limited infrastructure, trained personnel shortage, and inadequate funding. This scoping review explores AC techniques in Latin American countries, focusing on patient characteristics, tumor location, symptomatology, and outcomes. METHODS: A scoping review followed PRISMA guidelines, searching five databases in English, Spanish, and Portuguese. We included 28 studies with 258 patients (mean age: 43, range: 11-92). Patterns in AC use in Latin America were analyzed. RESULTS: Most studies were from Brazil and Mexico (53.6%) and public institutions (70%). Low-grade gliomas were the most common lesions (55%), most of them located in the left hemisphere (52.3%) and frontal lobe (52.3%). Gross-total resection was achieved in 34.3% of cases. 62.9% used an Asleep-Awake-Asleep protocol, and 14.8% used Awake-Awake-Awake. The main complication was seizures (14.6%). Mean post-surgery discharge time was 68 h. Challenges included limited training, infrastructure, and instrumentation availability. Strategies discussed involve training in specialized centers, seeking sponsorships, applying for awards, and multidisciplinary collaborations with neuropsychology. CONCLUSION: Improved accessibility to resources, infrastructure, and adequate instrumentation is crucial for wider AC availability in Latin America. Despite disparities, AC implementation with proper training and teamwork yields favorable outcomes in resource-limited centers. Efforts should focus on addressing challenges and promoting equitable access to this valuable surgical technique in the region.


Subject(s)
Brain Neoplasms , Glioma , Humans , Adult , Brain Neoplasms/surgery , Latin America , Wakefulness , Craniotomy/methods , Glioma/surgery
6.
World Neurosurg ; 180: e250-e257, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37739173

ABSTRACT

OBJECTIVE: Due to the increased demand for palliative care (PC) in recent years, a model has been proposed to divide PC into primary PC and specialist PC. This article aimed to delineate the indications for primary and specialist PC within 2 common neurosurgical conditions-glioblastoma (GBM) and stroke. METHODS: A systematic review and bibliometric analysis was conducted to better appreciate the practice trends in PC utilization for GBM and stroke patients using several databases. RESULTS: There were 70 studies on PC for GBM, the majority of which related to patient preference (22 [31%]). During 1999-2022, there was significant growth in publications per year on this topic at a rate of approximately 0.3 publications per year (P < 0.01). There were 44 studies on PC for stroke, the majority of which related to communication strategies (14 [32%]). During 1999-2022, there was no significant growth in stroke publications per year (P = 0.22). CONCLUSIONS: Due to the progressively disabling neurological course of GBM, we suggest that a specialty PC team be used in conjunction with the neurosurgical team early in the disease trajectory while patients are still able to communicate their preferences, goals, and values. In contrast, short-term and long-term stages of management of stroke have differing implications for PC needs, with the short-term stage necessitating adept, time-sensitive communication between the patient, family, and care teams. Thus, we propose that primary PC should be included as a core competency in neurosurgery training, among other stroke specialists.


Subject(s)
Glioblastoma , Neurosurgery , Stroke , Humans , Palliative Care , Glioblastoma/surgery , Bibliometrics , Stroke/surgery
7.
J Neurooncol ; 164(1): 43-54, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37490233

ABSTRACT

INTRODUCTION: Glioblastoma (GBM) is an aggressive primary brain cancer. Lack of effective therapy is related to its highly invasive nature. GBM invasion has been studied with reductionist systems that do not fully recapitulate the cytoarchitecture of the brain. We describe a human-derived brain organotypic model to study the migratory properties of GBM IDH-wild type ex vivo. METHODS: Non-tumor brain samples were obtained from patients undergoing surgery (n = 7). Organotypic brain slices were prepared, and green fluorescent protein (GFP)-labeled primary human GBM IDH-wild type cells (GBM276, GBM612, GBM965) were placed on the organotypic slice. Migration was evaluated via microscopy and immunohistochemistry. RESULTS: After placement, cells migrated towards blood vessels; initially migrating with limited directionality, sending processes in different directions, and increasing their speed upon contact with the vessel. Once merged, migration speed decreased and continued to decrease with time (p < 0.001). After perivascular localization, migration is limited along the blood vessels in both directions. The percentage of cells that contact blood vessels and then continue to migrate along the vessel was 92.5% (- 3.9/ + 2.9)% while the percentage of cells that migrate along the blood vessel and leave was 7.5% (- 2.9/ + 3.9) (95% CI, Clopper-Pearson (exact); n = 256 cells from six organotypic cultures); these percentages are significantly different from the random (50%) null hypothesis (z = 13.6; p < 10-7). Further, cells increase their speed in response to a decrease in oxygen tension from atmospheric normoxia (20% O2) to anoxia (1% O2) (p = 0.033). CONCLUSION: Human organotypic models can accurately study cell migration ex vivo. GBM IDH-wild type cells migrate toward the perivascular space in blood vessels and their migratory parameters change once they contact vascular structures and under hypoxic conditions. This model allows the evaluation of GBM invasion, considering the human brain microenvironment when cells are removed from their native niche after surgery.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/pathology , Brain/pathology , Tumor Cells, Cultured , Cell Movement/physiology , Brain Neoplasms/pathology , Cell Line, Tumor , Tumor Microenvironment
8.
Brain Sci ; 13(6)2023 May 23.
Article in English | MEDLINE | ID: mdl-37371322

ABSTRACT

In recent years, the endoscopic endonasal approach (EEA) for craniopharyngiomas has proven to be a safe option for extensive tumor resection, with minimal or no manipulation of the optic nerves and excellent visualization of the superior hypophyseal branches when compared to the Transcranial Approach (TCA). However, there is an ongoing debate regarding the criteria for selecting different approaches. To explore the current results of EEA and discuss its role in the management of craniopharyngiomas, we performed MEDLINE, Embase, and LILACS searches from 2012 to 2022. Baseline characteristics, the extent of resection, and clinical outcomes were evaluated. Statistical analysis was performed through an X2 and Fisher exact test, and a comparison between quantitative variables through a Kruskal-Wallis and verified with post hoc Bonferroni. The tumor volume was similar in both groups (EEA 11.92 cm3, -TCA 13.23 cm3). The mean follow-up in months was 39.9 for EEA and 43.94 for TCA, p = 0.76). The EEA group presented a higher visual improvement rate (41.96% vs. 25% for TCA, p < 0.0001, OR 7.7). Permanent DI was less frequent with EEA (29.20% vs. 67.40% for TCA, p < 0.0001, OR 0.2). CSF Leaks occurred more frequently with EEA (9.94% vs. 0.70% for TCA, p < 0.0001, OR 15.8). Recurrence rates were lower in the EEA group (EEA 15.50% vs. for TCA 21.20%, p = 0.04, OR 0.7). Our results demonstrate that, in selected cases, EEA for resection of craniopharyngiomas is associated with better results regarding visual preservation and extent of tumor resection. Postoperative CSF leak rates associated with EEA have improved compared to the historical series. The decision-making process should consider each person's characteristics; however, it is noticeable that recent data regarding EEA justify its widespread application as a first-line approach in centers of excellence for skull base surgery.

9.
Acta Neurochir (Wien) ; 165(7): 1781-1790, 2023 07.
Article in English | MEDLINE | ID: mdl-37014451

ABSTRACT

BACKGROUND: Classically, the torcular Herophili is described as the symmetric junction between the superior sagittal sinus (SSS), transverse sinuses (TSs), and straight sinus (SS). However, finding this pattern in practice is not standard. Anatomical variations are common, and different drainage patterns should be expected. Existing literature proposes highly detailed descriptions and classifications of this region. Still, a simplified and practical categorization is not available. METHODS: We present an anatomical finding of the torcular Herophili discovered on a cadaveric dissection. Then, we conducted a retrospective study examining the 100 most recent cranial magnetic resonance venographies (MRVs) from the Mayo Clinic, labeling them with a new proposed dural sinus classification system. Images were initially classified by two authors and further validated by a board-certified neurosurgeon and a board-certified neuroradiologist from our institution. To measure consistency in image identification, two additional international neurosurgeons were asked to classify a subset of the same MRV images, and their answers were compared. RESULTS: Of the MRV cohort, 33 patients were male and 67 were female. Their ages ranged from 18 to 86 years, with a mean of 47.35 years and a median of 49 years. Upon examination, 53 patients presented as confluent (53%), 9 as SSS divergent (9%), 25 as SS divergent (25%), 11 as circular (11%), and 2 as trifurcated (2%). The inter-rater reliability ranked very good; agreement between the two neurosurgeons was 83% (κ = 0.830, p < 0.0005). CONCLUSION: The confluence of the venous sinuses is a highly variable anatomical area that is rarely evaluated with neuroimaging before surgery. The classic textbook configuration is not the rule. Using a simplified classification system may increase awareness and hopefully patient safety by preparing the physician for anatomical variations that they will encounter in a surgical or clinical scenario.


Subject(s)
Cranial Sinuses , Transverse Sinuses , Humans , Male , Female , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Retrospective Studies , Reproducibility of Results , Cranial Sinuses/diagnostic imaging , Transverse Sinuses/diagnostic imaging , Transverse Sinuses/anatomy & histology , Superior Sagittal Sinus/diagnostic imaging
10.
Neurosurg Rev ; 46(1): 47, 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36725770

ABSTRACT

Glossopharyngeal neuralgia (GPN) is a neurological condition characterized by paroxysmal, stabbing-like pain along the distribution of the glossopharyngeal nerve that lasts from a couple of seconds to minutes. Pharmacological treatment with anticonvulsants is the first line of treatment; however, about 25% of patients remain symptomatic and require surgical intervention, which is usually done via microvascular decompression (MVD) with or without rhizotomy. More recently, the use of stereotactic radiosurgery (SRS) has been utilized as an alternative treatment method to relieve patient symptoms by causing nerve ablation. We conducted a systematic review to analyze whether MVD without rhizotomy is an equally effective treatment for GPN as MVD with the use of concurrent rhizotomy. Moreover, we sought to explore if SRS, a minimally invasive alternative surgical option, achieves comparable outcomes. We included retrospective studies and case reports in our search. We consulted PubMed and Medline, including articles from the year 2000 onwards. A total of 36 articles were included for review. Of all included patients with glossopharyngeal neuralgia, the most common offending artery compressing the glossopharyngeal nerve was the posterior inferior cerebellar artery (PICA). MVD alone was successful achieving pain relief immediately postoperatively in about 85% of patients, and also long term in 65-90% of patients. The most common complication found on MVD surgery was found to be transient hoarseness and transient dysphagia. Rhizotomy alone shows an instant pain relief in 85-100% of the patients, but rate of long-term pain relief was lower compared to MVD. The most common adverse effects observed after a rhizotomy were dysphagia and dysesthesia along the distribution of the glossopharyngeal nerve. SRS had promising results in pain reduction when using 75 Gy radiation or higher; however, long-term rates of pain relief were lower. MVD, rhizotomy, and SRS are effective methods to treat GPN as they help achieve instant pain relief and the decrease use of medication. Patients with MVD alone presented with less adverse effects than the group that underwent MVD plus rhizotomy. Although SRS may be a viable alternative treatment for GPN, further studies must be done to evaluate long-term treatment efficacy.


Subject(s)
Deglutition Disorders , Glossopharyngeal Nerve Diseases , Microvascular Decompression Surgery , Trigeminal Neuralgia , Humans , Retrospective Studies , Deglutition Disorders/etiology , Glossopharyngeal Nerve Diseases/surgery , Treatment Outcome , Microvascular Decompression Surgery/adverse effects , Pain/etiology , Vertebral Artery/surgery , Trigeminal Neuralgia/surgery
11.
J Neurooncol ; 161(1): 67-76, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36595192

ABSTRACT

PURPOSE: Glioblastoma (GBM) is the most common and malignant primary brain tumor in adults with a median overall survival of only 14.6 months despite aggressive treatment. While immunotherapy has been successful in other cancers, its benefit has been proven elusive in GBM, mainly due to a markedly immunosuppressive tumor microenvironment. SARS-CoV-2 has been associated with the development of a pronounced central nervous system (CNS) inflammatory response when infecting different cells including astrocytes, endothelial cells, and microglia. While SARS-CoV2 entry factors have been described in different tissues, their presence and implication on GBM aggressiveness or microenvironment has not been studied on appropriate preclinical models. METHODS: We evaluated the presence of crucial SARS-CoV-2 entry factors: ACE2, TMPRSS2, and NRP1 in matched surgically-derived GBM tissue, cells lines, and organoids; as well as in human brain derived specimens using immunohistochemistry, confocal pixel line intensity quantification, and transcriptome analysis. RESULTS: We show that patient derived-GBM tissue and cell cultures express SARS-CoV2 entry factors, being NRP1 the most crucial facilitator of SARS-CoV-2 infection in GBM. Moreover, we demonstrate that, receptor expression remains present in our GBM organoids, making them an adequate model to study the effect of this virus in GBM for the potential development of viral therapies in the future. CONCLUSION: Our findings suggest that the SARS-CoV-2 virus entry factors are expressed in primary tissues and organoid models and could be potentially utilized to study the susceptibility of GBM to this virus to target or modulate the tumor microenviroment.


Subject(s)
COVID-19 , Glioblastoma , Adult , Humans , Glioblastoma/pathology , SARS-CoV-2 , RNA, Viral/metabolism , RNA, Viral/therapeutic use , Endothelial Cells/metabolism , Organoids/metabolism , Organoids/pathology , Tumor Microenvironment
12.
Methods Mol Biol ; 2572: 117-127, 2023.
Article in English | MEDLINE | ID: mdl-36161412

ABSTRACT

Glioblastoma (GBM) is the most common and dismal primary brain tumor. Unfortunately, despite multidisciplinary treatment, most patients will perish approximately 15 months after diagnosis. For this reason, there is an urgent need to improve our understanding of GBM tumor biology and develop novel therapies that can achieve better clinical outcomes. In this setting, three-dimensional tumor models have risen as more appropriate preclinical tools when compared to traditional cell cultures, given that two-dimensional (2D) cultures have failed to accurately recapitulate tumor biology and translate preclinical findings into patient benefits. Three-dimensional cultures using neurospheres, organoids, and organotypic better resemble original tumor genetic and epigenetic profiles, maintaining tumor microenvironment characteristics and mimicking cell-cell and cell-matrix interactions. This chapter summarizes our methods to generate well-characterized glioblastoma neurospheres, organoids, and organotypics.


Subject(s)
Brain Neoplasms , Glioblastoma , Neoplasms, Experimental , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Glioblastoma/pathology , Humans , Neoplasms, Experimental/pathology , Neoplastic Stem Cells/pathology , Organoids/pathology , Tumor Microenvironment
13.
J Neurosurg Spine ; 38(4): 481-493, 2023 04 01.
Article in English | MEDLINE | ID: mdl-36585863

ABSTRACT

OBJECTIVE: The vertebral column is the most common site for skeletal metastasis, often leading to debilitating pain and weakness. Metastatic cancer has unique genetic drivers that potentiate tumorigenicity. There is an unmet need for novel targeted therapy in patients with spinal metastatic disease. METHODS: The authors assessed the effect of verteporfin-induced yes-associated protein (YAP) inhibition on spine metastatic cell tumorigenicity and radiation sensitivity in vitro. Animal studies used a subcutaneous xenograft mouse model to assess the use of systemic intraperitoneal verteporfin (IP-VP) and intratumoral verteporfin microparticles (IT-VP) to inhibit the tumorigenicity of lung and breast spinal metastatic tumors from primary patient-derived tissue. RESULTS: Verteporfin led to a dose-dependent decrease in migration, clonogenicity, and cell viability via inhibition of YAP and downstream effectors cyclin D1, CTGF, TOP2A, ANDRD1, MCL-1, FOSL2, KIF14, and KIF23. This was confirmed with knockdown of YAP. Verteporfin has an additive response when combined with radiation, and knockdown of YAP rendered cells more sensitive to radiation. The addition of verteporfin to YAP knockdown cells did not significantly alter migration, clonogenicity, or cell viability. IP-VP and IT-VP led to diminished tumor growth (p < 0.0001), especially when combined with radiation (p < 0.0001). Tissue analysis revealed diminished expression of YAP (p < 0.0001), MCL-1 (p < 0.0001), and Ki-67 (p < 0.0001) in tissue from verteporfin-treated tumors compared with vehicle-treated tumors. CONCLUSIONS: This is the first study to demonstrate that verteporfin-mediated inhibition of YAP leads to diminished tumorigenicity in lung and breast spinal metastatic cancer cells. Targeting of YAP with verteporfin offers promising results that could be translated to human clinical trials.


Subject(s)
Breast Neoplasms , Transcription Factors , Humans , Animals , Mice , Female , Verteporfin/pharmacology , Verteporfin/therapeutic use , Myeloid Cell Leukemia Sequence 1 Protein , Transcription Factors/metabolism , Transcription Factors/pharmacology , Cell Line, Tumor , Breast Neoplasms/drug therapy , Lung/metabolism , Cell Proliferation
14.
Clin Neurol Neurosurg ; 223: 107512, 2022 12.
Article in English | MEDLINE | ID: mdl-36435069

ABSTRACT

INTRODUCTION: There is a general lack of consensus on both anatomic definition and function of Broca's area, often localized to the pars triangularis (pT) and pars opercularis (pOp) of the left inferior frontal gyrus (IFG). Given the belief that this region plays a critical role in expressive language functions, resective surgery is often avoided to preserve function. However, the putative role of Broca's area in speech production has been recently challenged. The current study aims to investigate the plausibility of glioma resection and neurological outcomes in "Broca's area". METHODS: We report a single-surgeon, consecutive case series feasibility study describing the resection of gliomas within the IFG. Presentation, mapping, functional outcome, and extent of resection variables were considered for analysis. RESULTS: All included patients had tumors located in the traditional "Broca's area", eight (53.33 %) additionally extending into the insular and subinsular regions. All patients except for one, presented with speech-language deficits preoperatively. Awake brain surgery for tumor resection with direct cortical and subcortical stimulation and intraoperative neuropsychological evaluation was carried out in all individuals. During stimulation, positive speech-language sites within the IFG were identified in ten patients. Two patients (13.33 %) experienced a decline in naming during intraoperative cognitive monitoring and thirteen (86.66 %) had a stable performance throughout surgery. At two-week follow-up, all patients had recovery of language functions compared to initial presentation. Overall extent of resection (EOR) was 60.35 % ( ± 29.60) with residual tumor being the greatest within the insular and subinsular areas. EOR was stratified in anatomical regions within the IFG, being the pOr the area with the greatest EOR (97.4 %), followed by the pT (84.1 %), pOp (83.8 %), and vPMC (80 %). CONCLUSION: The belief that Broca's area is not safe to resect is challenged. Adequate mapping and careful patient selection allow maximum safe resection of tumors located in the traditional "Broca's area", with low risk of postoperative morbidity.


Subject(s)
Glioma , Surgeons , Humans , Broca Area/surgery , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/surgery , Research , Glioma/diagnostic imaging , Glioma/surgery
15.
Cells ; 11(21)2022 11 02.
Article in English | MEDLINE | ID: mdl-36359862

ABSTRACT

Metabolic rewiring in glioblastoma (GBM) is linked to intra- and extracellular pH regulation. In this study, we sought to characterize the role of melatonin on intracellular pH modulation and metabolic consequences to identify the mechanisms of action underlying melatonin oncostatic effects on GBM tumor initiating cells. GBM tumor initiating cells were treated at different times with melatonin (1.5 and 3.0 mM). We analyzed melatonin's functional effects on GBM proliferation, cell cycle, viability, stemness, and chemo-radiosensitivity. We then assessed the effects of melatonin on GBM metabolism by analyzing the mitochondrial and glycolytic parameters. We also measured the intracellular and extracellular pH. Finally, we tested the effects of melatonin on a mouse subcutaneous xenograft model. We found that melatonin downregulated LDHA and MCT4, decreasing lactate production and inducing a decrease in intracellular pH that was associated with an increase in ROS and ATP depletion. These changes blocked cell cycle progression and induced cellular death and we observed similar results in vivo. Melatonin's cytotoxic effects on GBM were due, at least in part, to intracellular pH modulation, which has emerged as a newly identified mechanism, providing new insights into the oncostatic effect of melatonin on GBM.


Subject(s)
Glioblastoma , Melatonin , Humans , Mice , Animals , Glioblastoma/drug therapy , Glioblastoma/metabolism , Melatonin/pharmacology , Melatonin/therapeutic use , Glycolysis , Cell Division , Hydrogen-Ion Concentration
16.
Neurosurg Focus ; 53(2): E11, 2022 08.
Article in English | MEDLINE | ID: mdl-35916096

ABSTRACT

Neurosurgical education is a continually developing field with an aim of training competent and compassionate surgeons who can care for the needs of their patients. The Mayo Clinic utilizes a unique mentorship model for neurosurgical training. In this paper, the authors detail the historical roots as well as the logistical and experiential characteristics of this teaching model. This model was first established in the late 1890s by the Mayo brothers and then adopted by the Mayo Clinic Department of Neurological Surgery at its inception in 1919. It has since been implemented enterprise-wide at the Minnesota, Florida, and Arizona residency programs. The mentorship model is focused on honing resident skills through individualized attention and guidance from an attending physician. Each resident is closely mentored by a consultant during a 2- or 3-month rotation, which allows for exposure to more complex cases early in their training. In this model, residents take ownership of their patients' care, following them longitudinally during their hospital course with guided oversight from their mentors. During the chief year, residents have their own clinic, operating room (OR) schedule, and OR team and service nurse. In this model, chief residents conduct themselves more in the manner of an attending physician than a trainee but continue to have oversight from staff to provide a "safety net." The longitudinal care of patients provided by the residents under the mentorship model is not only beneficial for the trainee and the hospital, but also has a positive impact on patient satisfaction and safety. The Mayo Clinic Mentorship Model is one of many educational models that has demonstrated itself to be an excellent approach for resident education.


Subject(s)
Internship and Residency , Neurosurgery , Surgeons , Humans , Male , Mentors
18.
PNAS Nexus ; 1(1): pgac013, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35387234

ABSTRACT

A small population of self-renewing stem cells initiate tumors and maintain therapeutic resistance in glioblastoma (GBM). Given the limited treatment options and dismal prognosis for this disease, there is urgent need to identify drivers of stem cells that could be druggable targets. Previous work showed that the endosomal pH regulator NHE9 is upregulated in GBM and correlates with worse survival prognosis. Here, we probed for aberrant signaling pathways in patient-derived GBM cells and found that NHE9 increases cell surface expression and phosphorylation of multiple receptor tyrosine kinases (RTKs) by promoting their escape from lysosomal degradation. Downstream of NHE9-mediated receptor activation, oncogenic signaling pathways converged on the JAK2-STAT3 transduction axis to induce pluripotency genes Oct4 and Nanog and suppress markers of glial differentiation. We used both genetic and chemical approaches to query the role of endosomal pH in GBM phenotypes. Loss-of-function mutations in NHE9 that failed to alkalinize endosomal lumen did not increase self-renewal capacity of gliomaspheres in vitro. However, monensin, a chemical mimetic of Na+/H+ exchanger activity, and the H+ pump inhibitor bafilomycin bypassed NHE9 to directly alkalinize the endosomal lumen resulting in stabilization of RTKs and induction of Oct4 and Nanog. Using orthotopic models of primary GBM cells we found that NHE9 increased tumor initiation in vivo. We propose that NHE9 initiates inside-out signaling from the endosomal lumen, distinct from the established effects of cytosolic and extracellular pH on tumorigenesis. Endosomal pH may be an attractive therapeutic target that diminishes stemness in GBM, agnostic of specific receptor subtype.

19.
Curr Oncol Rep ; 24(8): 975-984, 2022 08.
Article in English | MEDLINE | ID: mdl-35353348

ABSTRACT

PURPOSE OF REVIEW: Patients with brain and spine tumors are at high risk of presenting cancer-related complications at disease presentation or during active treatment and are usually related to the type and location of the lesion. Here, we discuss presentation and management of the most common emergencies affecting patients with central nervous system neoplastic lesions. RECENT FINDINGS: Tumor-related emergencies encompass complications in patients with central nervous system neoplasms, as well as neurologic complications in patients with systemic malignancies. Brain tumor patients are at high risk of developing multiple complications such as intracranial hypertension, brain herniation, intracranial bleeding, spinal cord compression, and others. Neuro-oncologic emergencies require immediate attention and multi-disciplinary care. These emergent situations usually need rapid decision-making and management on an inpatient basis.


Subject(s)
Brain Neoplasms , Central Nervous System Neoplasms , Brain Neoplasms/complications , Brain Neoplasms/therapy , Emergencies , Humans , Immunotherapy
SELECTION OF CITATIONS
SEARCH DETAIL
...