Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arthritis Rheumatol ; 75(6): 961-972, 2023 06.
Article in English | MEDLINE | ID: mdl-36575804

ABSTRACT

OBJECTIVE: Variants in STAT4 are associated with systemic lupus erythematosus (SLE) and other autoimmune diseases. We undertook this study to investigate how disease-associated variants affect STAT4 expression, in particular in CD4+ T cells where STAT4 plays an essential role. METHODS: We compared Th1 differentiation between naive CD4+ T cells from healthy donors homozygous for the risk (R/R) or nonrisk (NR/NR) alleles. We analyzed epigenetic marks in STAT4 and evaluated the relevance of its third intron, assessed the consequences of Stat4 overexpression in vivo in mice, and analyzed the effects of the STAT4 genotype in patients with lupus nephritis. RESULTS: Naive CD4+ T cells from NR/NR healthy donors down-regulated STAT4 in response to interleukin-12 (IL-12). In contrast, cells from R/R healthy donors maintained high levels. R/R cells exhibited a higher abundance of transcriptionally active STAT4 and increased interferon-γ production. Accordingly, R/R healthy donors exhibited a stronger induction of local active enhancer marks. Genetic editing confirmed the presence of a negative regulatory region in the STAT4 third intron, where most of the SLE-associated STAT4 single-nucleotide polymorphisms (SNPs) are located. In vivo forced expression demonstrated that increases in Stat4 levels in T cells enhanced glomerulonephritis in mice. Accordingly, the R/R genotype was associated with suboptimal response to treatment and with worse clinical outcomes in patients with proliferative lupus nephritis. CONCLUSION: The SLE-associated STAT4 haplotype correlates with an abnormal IL-12-mediated STAT4 transcriptional regulation. Carriers of the risk variant exhibit exaggerated CD4+ proinflammatory capacities that, in the context of SLE, contribute to more severe disease. R/R patients may benefit from blockade of the IL-12/STAT4 pathway.


Subject(s)
Lupus Erythematosus, Systemic , Lupus Nephritis , Animals , Mice , CD4-Positive T-Lymphocytes/metabolism , Down-Regulation , Haplotypes , Interferon-gamma/genetics , Interleukin-12 , Lupus Erythematosus, Systemic/genetics , Lupus Nephritis/genetics , Polymorphism, Single Nucleotide , STAT4 Transcription Factor/genetics , Humans
2.
Clin Immunol ; 236: 108952, 2022 03.
Article in English | MEDLINE | ID: mdl-35149196

ABSTRACT

Systemic lupus erythematosus (SLE) is a chronic autoimmune disease associated with multiple phenotypic and functional aberrations in T lymphocytes. Among these, altered expression and/or activity of several protein kinases and phosphatases has been consistently documented in T cells obtained from patients with SLE. In this review, we describe and contextualize some of the kinase and phosphatase defects reported in T cells from patients with SLE, highlighting their relevance and possible consequences. Additionally, we discuss the origin of the defects and its significance for disease development and expression.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Autoimmune Diseases/metabolism , Humans , Phosphoric Monoester Hydrolases/metabolism , Protein Kinases/metabolism , T-Lymphocytes
SELECTION OF CITATIONS
SEARCH DETAIL
...