Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Pollut ; 326: 121452, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36958663

ABSTRACT

Activities related to the offshore exploration and production of oil and natural gas provide economic development and an essential energy source. However, besides the risk of petroleum hydrocarbon contamination, these activities can also be sources of metals and metalloids for marine organism contamination. In this research, we evaluated the potential use of two pelagic (black-browed albatross Thalassarche melanophris and yellow-nosed albatross T. chlororhynchos) and one estuarine bird species (neotropical cormorant Nannopterum brasilianus) as sentinels of contamination of As, Cd, Cr, Cu, Pb, Mn, Mo, Zn, Ni, Ba, V, and Hg in an area under influence of oil and gas activities. The analyses were carried out in samples collected from 2015 to 2022 from 97 individuals. A factor alert; an adaptation from the contamination factor is proposed to identify individuals with high concentrations that possibly suffered contamination by anthropogenic origin. Grouping all species, the metal(loid)s with the highest concentrations were in decreasing order: Zn > Cu > Mn > Hg > As > Cd > Mo > V > Cr > Ba > Ni > Pb. Similar concentrations were observed for V, Mn, Cr and Pb among the three species. Pelagic birds showed higher levels of concentrations for Hg, As and Cd. Based on the correlations and multivariate analysis performed, the results indicate that the ecological niche factor has greater relevance in the bioaccumulation of these elements compared to the habitat. Although some individuals showed high concentrations in part of the trace elements, suggesting exposure to anthropic sources, the direct influence of oil production and exploration activities was not observed, suggesting that activities on the continent are the primary contamination source. The results of this work highlight the role of seabirds as sentinels for metal(loid)s, contributing to the knowledge of the occurrence of contaminants in the South Atlantic Ocean.


Subject(s)
Mercury , Metals, Heavy , Water Pollutants, Chemical , Humans , Animals , Metals, Heavy/analysis , Bioaccumulation , Cadmium/analysis , Lead/analysis , Environmental Monitoring/methods , Ecosystem , Mercury/analysis , Birds , Risk Assessment , Water Pollutants, Chemical/analysis
2.
Anal Chim Acta ; 950: 32-40, 2017 Jan 15.
Article in English | MEDLINE | ID: mdl-27916127

ABSTRACT

Amberlite IRA-410 anionic exchange resin was evaluated as the binding layer for sampling V(V) by using Diffusive Gradients in Thin Films (DGT). V(V) was determined by inductively coupled plasma mass spectrometry (ICP-MS). Mass vs. time DGT deployments (ionic strength = 0.03 mol L-1 NaNO3, pH = 5.6 and T = 23.5 ± 0.5 °C) was characterized by excellent linear relationship (R2 = 0.9993) and a significant retention of V(V) by the binding layer. An exchange capacity of at least 40 µg V g-1 resin was achieved for the proposed binding layer. The diffusion coefficient obtained (7.13 ± 0.6 10-6 cm2 s-1) agrees with the literature. The accumulation rate of V(V) was not significantly affected by ionic strength of solutions up to 0.03 mol L-1 and for the entire studied pH range (from 3 to 9). Furthermore, when comparing the concentrations obtained using IRA-410-DGT and those obtained by direct measurement of the solution concentrations, the proposed approach provided a reduction of the 35Cl16O interference on V(V) determination by ICP-MS. Determination of V in normal mode (without collision cell) in solutions containing analyte:Cl- concentration ratio up to 1:500,000 was not affected by interference of 35Cl16O+ polyatomic ion even when normal mode ICP-MS was used. Potential interfering ions on sampling V(V) by DGT (PO43- and SO42-) showed no significant effects on the accumulation rate of V(V). Laboratory tests performed using synthetic samples, natural freshwater and acid drainage water showed an excellent performance (recoveries from 93% to 110%). For in situ deployment, measurements of V(V) by the proposed approach was not significantly different (95.5%) from the value of dissolved V concentration.

3.
Anal Chim Acta ; 887: 38-44, 2015 Aug 05.
Article in English | MEDLINE | ID: mdl-26320783

ABSTRACT

Saccharomyces cerevisiae immobilized in agarose gel as binding phase and polyacrylamide as diffusive layer in the diffusive gradient in thin films technique (DGT) was used for selective determination of methylmercury (MeHg). Deployment tests showed good linearity in mass uptake up to 48 h (3276 ng). When coupling the DGT technique with Cold Vapor Atomic Fluorescence Spectrometry, the method has a limit of detection of 0.44 ng L(-1) (pre concentration factor of 11 for 48 h deployment). Diffusion coefficient of 7.03 ± 0.77 × 10(-6) cm(2) s(-1) at 23 °C in polyacrylamide gel (pH = 5.5 and ionic strength = 0.05 mol L(-1) NaCl) was obtained. Influence of ionic strength (from 0.0005 mol L(-1) to 0.1 mol L(-1) NaCl) and pH (from 3.5 to 8.5) on MeHg uptake were evaluated. For these range, recoveries of 84-105% and 84-98% were obtained for ionic strength and pH respectively. Potential interference due to presence of Cu, Fe, Mn, Zn was also assessed showing good recoveries (70-87%). The selectivity of the proposed approach was tested by deployments in solutions containing MeHg and Hg(II). Results obtained showed recoveries of 102-115 % for MeHg, while the uptake of Hg(II) was insignificant. The proposed approach was successfully employed for in situ measurements in the Negro River (Manaus-AM, Brazil).


Subject(s)
Biosensing Techniques/methods , Environmental Monitoring/methods , Methylmercury Compounds/analysis , Rivers/chemistry , Saccharomyces cerevisiae/metabolism , Water Pollutants, Chemical/analysis , Brazil , Cells, Immobilized/metabolism , Diffusion , Gels/chemistry , Hydrogen-Ion Concentration , Methylmercury Compounds/isolation & purification , Methylmercury Compounds/metabolism , Osmolar Concentration , Sepharose/chemistry , Water Pollutants, Chemical/isolation & purification , Water Pollutants, Chemical/metabolism
4.
Talanta ; 129: 417-21, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25127614

ABSTRACT

In this work, a device based on diffusive gradients in thin films (DGT) was evaluated for the determination of Hg(II) in river water. The DGT device was assembled with a cellulose phosphate ion exchange membrane (P81 Whatman) as a binding phase and agarose gel 1.5% (m/v) as a diffusive layer. Laboratory deployments showed that the binding of Hg(2+) ([Hg(DGT)]/[Hg(solution)]) by P81 membrane was more effective (97%) than the Chelex 100 resin (80%).The effect of ionic strength, pH and potential interfering ions on Hg binding with DGT׳s was investigated. The results showed no significant effect on the binding of Hg(II) at pH range from 3.5 to 8.5 and at an ionic strength range from 0.0005 to 0.1 mol L(-1). Uptakes of 50 µg L(-1) Hg(II) by P81 membrane were not affected by Fe, Mn, Zn, Cu, Ca and Mg at the concentration range of 200-1800 µg L(-1). Finally, the DGT device using the P81 as the binding layer was applied for in situ measurements of Hg in river water. For in situ measurements, the labile Hg concentration (from <2 to 13 ng L(-1)) was lower than 10% of the dissolved fraction (from 155 to 446 ng L(-1)).


Subject(s)
Environmental Monitoring/methods , Mercury/analysis , Rivers/chemistry , Water Pollutants, Chemical/analysis , Cellulose/analogs & derivatives , Cellulose/chemistry , Chemistry Techniques, Analytical , Diffusion , Fresh Water/chemistry , Hydrogen-Ion Concentration , Ions , Osmolar Concentration , Resins, Synthetic/chemistry , Sepharose/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...