Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Phys Sci ; 5(4): 101892, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38720789

ABSTRACT

Understanding how different networks relate to each other is key for understanding complex systems. We introduce an intuitive yet powerful framework to disentangle different ways in which networks can be (dis)similar and complementary to each other. We decompose the shortest paths between nodes as uniquely contributed by one source network, or redundantly by either, or synergistically by both together. Our approach considers the networks' full topology, providing insights at multiple levels of resolution: from global statistics to individual paths. Our framework is widely applicable across scientific domains, from public transport to brain networks. In humans and 124 other species, we demonstrate the prevalence of unique contributions by long-range white-matter fibers in structural brain networks. Across species, efficient communication also relies on significantly greater synergy between long-range and short-range fibers than expected by chance. Our framework could find applications for designing network systems or evaluating existing ones.

2.
Nat Commun ; 15(1): 656, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38253577

ABSTRACT

The connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks. Reservoir computing is a versatile paradigm that uses high-dimensional, nonlinear dynamical systems to perform computations and approximate cognitive functions. Here we present conn2res: an open-source Python toolbox for implementing biological neural networks as artificial neural networks. conn2res is modular, allowing arbitrary network architecture and dynamics to be imposed. The toolbox allows researchers to input connectomes reconstructed using multiple techniques, from tract tracing to noninvasive diffusion imaging, and to impose multiple dynamical systems, from spiking neurons to memristive dynamics. The versatility of the conn2res toolbox allows us to ask new questions at the confluence of neuroscience and artificial intelligence. By reconceptualizing function as computation, conn2res sets the stage for a more mechanistic understanding of structure-function relationships in brain networks.


Subject(s)
Artificial Intelligence , Connectome , Adaptation, Psychological , Brain/diagnostic imaging , Cognition
3.
Elife ; 112022 11 07.
Article in English | MEDLINE | ID: mdl-36342363

ABSTRACT

Mammalian taxonomies are conventionally defined by morphological traits and genetics. How species differ in terms of neural circuits and whether inter-species differences in neural circuit organization conform to these taxonomies is unknown. The main obstacle to the comparison of neural architectures has been differences in network reconstruction techniques, yielding species-specific connectomes that are not directly comparable to one another. Here, we comprehensively chart connectome organization across the mammalian phylogenetic spectrum using a common reconstruction protocol. We analyse the mammalian MRI (MaMI) data set, a database that encompasses high-resolution ex vivo structural and diffusion MRI scans of 124 species across 12 taxonomic orders and 5 superorders, collected using a unified MRI protocol. We assess similarity between species connectomes using two methods: similarity of Laplacian eigenspectra and similarity of multiscale topological features. We find greater inter-species similarities among species within the same taxonomic order, suggesting that connectome organization reflects established taxonomic relationships defined by morphology and genetics. While all connectomes retain hallmark global features and relative proportions of connection classes, inter-species variation is driven by local regional connectivity profiles. By encoding connectomes into a common frame of reference, these findings establish a foundation for investigating how neural circuits change over phylogeny, forging a link from genes to circuits to behaviour.


Subject(s)
Connectome , Animals , Connectome/methods , Phylogeny , Brain/diagnostic imaging , Brain/anatomy & histology , Magnetic Resonance Imaging , Mammals
4.
Nat Methods ; 19(11): 1472-1479, 2022 11.
Article in English | MEDLINE | ID: mdl-36203018

ABSTRACT

Imaging technologies are increasingly used to generate high-resolution reference maps of brain structure and function. Comparing experimentally generated maps to these reference maps facilitates cross-disciplinary scientific discovery. Although recent data sharing initiatives increase the accessibility of brain maps, data are often shared in disparate coordinate systems, precluding systematic and accurate comparisons. Here we introduce neuromaps, a toolbox for accessing, transforming and analyzing structural and functional brain annotations. We implement functionalities for generating high-quality transformations between four standard coordinate systems. The toolbox includes curated reference maps and biological ontologies of the human brain, such as molecular, microstructural, electrophysiological, developmental and functional ontologies. Robust quantitative assessment of map-to-map similarity is enabled via a suite of spatial autocorrelation-preserving null models. neuromaps combines open-access data with transparent functionality for standardizing and comparing brain maps, providing a systematic workflow for comprehensive structural and functional annotation enrichment analysis of the human brain.


Subject(s)
Brain Mapping , Brain , Humans , Brain Mapping/methods , Brain/physiology
5.
Trends Cogn Sci ; 24(4): 302-315, 2020 04.
Article in English | MEDLINE | ID: mdl-32160567

ABSTRACT

Structure-function relationships are a fundamental principle of many naturally occurring systems. However, network neuroscience research suggests that there is an imperfect link between structural connectivity and functional connectivity in the brain. Here, we synthesize the current state of knowledge linking structure and function in macroscale brain networks and discuss the different types of models used to assess this relationship. We argue that current models do not include the requisite biological detail to completely predict function. Structural network reconstructions enriched with local molecular and cellular metadata, in concert with more nuanced representations of functions and properties, hold great potential for a truly multiscale understanding of the structure-function relationship.


Subject(s)
Connectome , Neurosciences , Brain , Humans , Nerve Net
6.
Proc Natl Acad Sci U S A ; 116(42): 21219-21227, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31570622

ABSTRACT

The white matter architecture of the brain imparts a distinct signature on neuronal coactivation patterns. Interregional projections promote synchrony among distant neuronal populations, giving rise to richly patterned functional networks. A variety of statistical, communication, and biophysical models have been proposed to study the relationship between brain structure and function, but the link is not yet known. In the present report we seek to relate the structural and functional connection profiles of individual brain areas. We apply a simple multilinear model that incorporates information about spatial proximity, routing, and diffusion between brain regions to predict their functional connectivity. We find that structure-function relationships vary markedly across the neocortex. Structure and function correspond closely in unimodal, primary sensory, and motor regions, but diverge in transmodal cortex, particularly the default mode and salience networks. The divergence between structure and function systematically follows functional and cytoarchitectonic hierarchies. Altogether, the present results demonstrate that structural and functional networks do not align uniformly across the brain, but gradually uncouple in higher-order polysensory areas.


Subject(s)
Neocortex/physiology , Neural Pathways/physiology , Adult , Diffusion Tensor Imaging/methods , Female , Humans , Magnetic Resonance Imaging/methods , Male , Models, Neurological , White Matter/physiology
7.
Neural Netw ; 106: 223-236, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30077960

ABSTRACT

This work presents the simulation results of a novel recurrent, memristive neuromorphic architecture, the MN3 and explores its computational capabilities in the performance of a temporal pattern recognition task by considering the principles of the reservoir computing approach. A simple methodology based on the definitions of ordered and chaotic dynamical systems was used to determine the separation and fading memory properties of the architecture. The results show the potential use of this architecture as a reservoir for the on-line processing of time-varying inputs.


Subject(s)
Neural Networks, Computer , Speech Recognition Software , Memory , Nanofibers , Speech Recognition Software/trends
SELECTION OF CITATIONS
SEARCH DETAIL
...