Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Prep Biochem Biotechnol ; 54(1): 19-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37149786

ABSTRACT

Fifty percent of the overall operational expenses of biorefineries are incurred during enzymatic-saccharification processes. Cellulases have a global-market value of $1621 USD. Dearth of conventional lignocelluloses have led to the exploration of their waste stream-based, unconventional sources. Native fungus-employing cellulase-production batches fail to yield sustained enzyme titers. It could be attributed to variations in the enzyme-production broth's quasi-dilatant behavior, its fluid and flow properties; heat and oxygen transfer regimes; kinetics of fungal growth; and nutrient utilization. The current investigation presents one of the first-time usages of a substrate mixture, majorly comprising disposed COVID-19 personal protective-equipment (PPE). To devise a sustainable and scalable cellulase-production process, various variable-regulated, continuous-culture auxostats were performed. The glucose concentration-maintaining auxostat recorded consistent endoglucanase titers throughout its feeding-cum-harvest cycles; furthermore, it enhanced oxygen transfer, heat transfer co-efficient, and mass transfer co-efficient by 91.5, 36, and 77%, respectively. Substrate-characterization revealed that an unintended, autoclave-based organsolv pretreatment caused unanticipated increases in endoglucanase titers. The cumulative lab-scale cellulase-production cost was found to be $16.3. The proposed approach is economical, and it offers a pollution-free waste management process, thereby generating carbon credits.


Subject(s)
COVID-19 , Cellulase , Cellulases , Humans , Cellulase/chemistry , COVID-19/prevention & control , Cellulases/chemistry , Hot Temperature , Oxygen
SELECTION OF CITATIONS
SEARCH DETAIL
...