Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
1.
Int J Mol Sci ; 24(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37629129

ABSTRACT

Lutein, zeaxanthin, and meso-zeaxanthin (a steroisomer of zeaxanthin) are macular pigments. They modify the physical properties of the lipid bilayers in a manner similar to cholesterol. It is not clear if these pigments are directly present in the lipid phase of the membranes, or if they form complexes with specific membrane proteins that retain them in high amounts in the correct place in the retina. The high content of macular pigments in the Henle fiber layer indicates that a portion of the lutein and zeaxanthin should not only be bound to the specific proteins but also directly dissolved in the lipid membranes. This high concentration in the prereceptoral region of the retina is effective for blue-light filtration. Understanding the basic mechanisms of these actions is necessary to better understand the carotenoid-membrane interaction and how carotenoids affect membrane physical properties-such as fluidity, polarity, and order-in relation to membrane structure and membrane dynamics. This review focuses on the properties of lutein.


Subject(s)
Carotenoids , Lutein , Zeaxanthins , Membranes , Lipid Bilayers
2.
Membranes (Basel) ; 12(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36295720

ABSTRACT

The spin-lattice relaxation rate (T1-1) of lipid spin labels obtained from saturation recovery EPR measurements in deoxygenated membranes depends primarily on the rate of the rotational diffusion of the nitroxide moiety within the lipid bilayer. It has been shown that T1-1 also can be used as a qualitative convenient measure of membrane fluidity that reflects local membrane dynamics; however, the relation between T1-1 and rotational diffusion coefficients was not provided. In this study, using data previously presented for continuous wave and saturation recovery EPR measurements of phospholipid analog spin labels, one-palmitoyl-2-(n-doxylstearoyl)phosphatidylcholine in 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/cholesterol membranes, we show that measured T1-1 values are linear functions of rotational diffusion of spin labels. Thus, these linear relationships can be used to transfer T1-1 values into spin label rotational rates as a precise description of membrane fluidity. This linearity is independent through the wide range of conditions including lipid environment, depth in membrane, local hydrophobicity, and the anisotropy of rotational motion. Transferring the spin-lattice relaxation rates into the rotational diffusion coefficients makes the results obtained from saturation recovery EPR spin labeling easy to understand and readily comparable with other membrane fluidity data.

3.
Oxygen (Basel) ; 2(3): 295-316, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36852103

ABSTRACT

Molecular oxygen (O2) is the perfect probe molecule for membrane studies carried out using the saturation recovery EPR technique. O2 is a small, paramagnetic, hydrophobic enough molecule that easily partitions into a membrane's different phases and domains. In membrane studies, the saturation recovery EPR method requires two paramagnetic probes: a lipid-analog nitroxide spin label and an oxygen molecule. The experimentally derived parameters of this method are the spin-lattice relaxation times (T 1s) of spin labels and rates of bimolecular collisions between O2 and the nitroxide fragment. Thanks to the long T 1 of lipid spin labels (from 1 to 10 µs), the approach is very sensitive to changes of the local (around the nitroxide fragment) O2 diffusion-concentration product. Small variations in the lipid packing affect O2 solubility and O2 diffusion, which can be detected by the shortening of T 1 of spin labels. Using O2 as a probe molecule and a different lipid spin label inserted into specific phases of the membrane and membrane domains allows data about the lateral arrangement of lipid membranes to be obtained. Moreover, using a lipid spin label with the nitroxide fragment attached to its head group or a hydrocarbon chain at different positions also enables data about molecular dynamics and structure at different membrane depths to be obtained. Thus, the method can be used to investigate not only the lateral organization of the membrane (i.e., the presence of membrane domains and phases), but also the depth-dependent membrane structure and dynamics, and, hence, the membrane properties in three dimensions.

4.
Comput Struct Biotechnol J ; 19: 4319-4335, 2021.
Article in English | MEDLINE | ID: mdl-34429850

ABSTRACT

Cholesterol (Chol) is the most prevalent sterol in the animal kingdom and an indispensable component of mammalian cell membranes. Chol content in the membrane is strictly controlled, although the oxidation of phospholipids may change the relative content of membrane Chol. An excess of it results in the formation of pure Chol microdomains in the membrane. It is likely that some Chol molecules detach from the domains and self-assemble in the aqueous environment. This may promote Chol microcrystallisation, which initiates the development of gallstones and atherosclerotic plaque. In this study, the molecular dynamics, free energy perturbation, umbrella sampling and Voronoi diagram methods are used to reveal the details of self-association of Chol and its oxidised forms (oxChol), namely 7α,ß-hydroxycholesterol and 7α,ß-hydroperoxycholesterol, in water. In the first part of the study the interactions between a sterol monomer and water over a short and longer timescale as well as the energy of hydration of each sterol are analysed. This helps one to understand Chol-Chol and Chol-OxChol with different chirality self-association in water better, which is analysed in the second part of the study. The Voronoi diagram approach is used to determine the relative arrangement of molecules in the dimer and, most importantly, to analyse the dehydration of the contacting surfaces of the assembling molecules. Free energy calculations indicate that Chol and 7ß-hydroxycholesterol associate into the most stable dimer and that Chol-Chol is the next most stable of the five dimers studied. Employing different computational methods enables us to obtain an adequate picture of Chol-sterol self-association in water, which includes dynamic, energetic and temporal aspects of the process.

5.
Antioxidants (Basel) ; 10(4)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919673

ABSTRACT

Macular xanthophylls, which are absorbed from the human diet, accumulate in high concentrations in the human retina, where they efficiently protect against oxidative stress that may lead to retinal damage. In addition, macular xanthophylls are uniquely spatially distributed in the retina. The zeaxanthin concentration (including the lutein metabolite meso-zeaxanthin) is ~9-fold greater than lutein concentration in the central fovea. These numbers do not correlate at all with the dietary intake of xanthophylls, for which there is a dietary zeaxanthin-to-lutein molar ratio of 1:12 to 1:5. The unique spatial distributions of macular xanthophylls-lutein, zeaxanthin, and meso-zeaxanthin-in the retina, which developed during evolution, maximize the protection of the retina provided by these xanthophylls. We will correlate the differences in the spatial distributions of macular xanthophylls with their different antioxidant activities in the retina. Can the major protective function of macular xanthophylls in the retina, namely antioxidant actions, explain their evolutionarily determined, unique spatial distributions? In this review, we will address this question.

6.
Exp Eye Res ; 206: 108536, 2021 05.
Article in English | MEDLINE | ID: mdl-33716012

ABSTRACT

Eye lens membranes are complex biological samples. They consist of a variety of lipids that form the lipid bilayer matrix, integral proteins embedded into the lipid bilayer, and peripheral proteins. This molecular diversity in membrane composition induces formation of lipid domains with particular physical properties that are responsible for the maintenance of proper membrane functions. These domains can be, and have been, effectively described in terms of the rotational diffusion of lipid spin labels and oxygen collision with spin labels using the saturation recovery (SR) electron paramagnetic resonance method and, now, using stretched exponential function for the analysis of SR signals. Here, we report the application of the stretched exponential function analysis of SR electron paramagnetic resonance signals coming from cholesterol analog, androstane spin label (ASL) in the lipid bilayer portion of intact fiber cell plasma membranes (IMs) isolated from the cortex and nucleus of porcine eye lenses. Further, we compare the properties of these IMs with model lens lipid membranes (LLMs) derived from the total lipids extracted from cortical and nuclear IMs. With this approach, the IM can be characterized by the continuous probability density distribution of the spin-lattice relaxation rates associated with the rotational diffusion of a spin label, and by the distribution of the oxygen transport parameter within the IM (i.e., the collision rate of molecular oxygen with the spin label). We found that the cortical and nuclear LLMs possess very different, albeit homogenous, spin lattice relaxation rates due to the rotational diffusion of ASL, indicating that the local rigidity around the spin label in nuclear LLMs is considerably greater than that in cortical LLMs. However, the oxygen transport parameter around the spin label is very similar and slightly heterogenous for LLMs from both sources. This heterogeneity was previously missed when distinct exponential analysis was used. The spin lattice relaxation rates due to either the rotational diffusion of ASL or the oxygen collision with the spin label in nuclear IMs have slower values and wider distributions compared with those of cortical IMs. From this evidence, we conclude that lipids in nuclear IMs are less fluid and more heterogeneous than those in cortical membranes. Additionally, a comparison of properties of IMs with corresponding LLMs, and lipid and protein composition analysis, allow us to conclude that the decreased lipid-to-protein ratio not only induces greater rigidity of nuclear IMs, but also creates domains with the considerably decreased and variable oxygen accessibility. The advantages and disadvantages of this method, as well as its use for the cluster analysis, are discussed.


Subject(s)
Cell Membrane/metabolism , Cell Nucleus/metabolism , Lens Cortex, Crystalline/metabolism , Lens Nucleus, Crystalline/metabolism , Membrane Lipids/metabolism , Animals , Cholesterol/metabolism , Electron Spin Resonance Spectroscopy/methods , Lens Cortex, Crystalline/cytology , Lens Nucleus, Crystalline/cytology , Lipid Bilayers/metabolism , Membrane Fluidity , Models, Animal , Spin Labels , Swine
7.
Appl Magn Reson ; 52(10): 1237-1260, 2021 Oct.
Article in English | MEDLINE | ID: mdl-36267674

ABSTRACT

This review is motivated by the exciting new area of radiation therapy using a phenomenon termed FLASH in which oxygen is thought to have a central role. Well-established principles of radiation biology and physics suggest that if oxygen has a strong role, it should be the level at the DNA. The key aspect discussed is the rate of oxygen diffusion. If oxygen freely diffuses into cells and rapidly equilibrates, then measurements in the extracellular compartment would enable FLASH to be investigated using existing methodologies that can readily measure oxygen in the extracellular compartment. EPR spin-label oximetry allows evaluation of the oxygen permeability coefficient across lipid bilayer membranes. It is established that simple fluid phase lipid bilayers are not barriers to oxygen transport. However, further investigations indicate that many physical and chemical (compositional) factor can significantly decrease this permeation. In biological cell plasma membranes, the lipid bilayer forms the matrix in which integral membrane proteins are immersed, changing organization and properties of the lipid matrix. To evaluate oxygen permeability coefficients across these complex membranes, oxygen permeation across all membrane domains and components must be considered. In this review, we consider many of the factors that affect (decrease) oxygen permeation across cell plasma membranes. Finally, we address the question, can the plasma membrane of the cell form a barrier to the free diffusion of oxygen into the cell interior? If there is a barrier then this must be considered in the investigations of the role of oxygen in FLASH.

8.
Cell Biochem Biophys ; 78(3): 241-247, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32602057

ABSTRACT

Major factors leading to the development of atherosclerosis are a high cholesterol (Chol) level in the blood and oxidative stress. Both promote the formation of Chol microcrystals in blood vessel walls. Deposition of Chol microcrystals in arterial intima causes inflammation, which initiates and accompanies the atherosclerotic process in all its phases. One of the possible sources of Chol in the blood vessel walls is oxidized low-density lipoproteins-this atherosclerotic plaque formation pathway has already been described in the literature. Here, we hypothesize that initiation of the atherosclerotic process may involve Chol domains in the plasma membranes of arterial cells. Increased Chol content and the presence of polyunsaturated phospholipids in these membranes together with oxidative stress (phospholipid peroxidation) may lead to the formation of pure Chol bilayer domains that, with further peroxidation and increased Chol content, may collapse in the form of Chol seed crystals. Independent of their origin, Chol microcrystals activate inflammasomes, thereby stimulate immune responses, and initiate inflammation that may lead to the development of atherosclerosis. This new, hypothetical pathway has not yet been investigated in depth; however, data from the literature and our own results support its feasibility.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/blood , Inflammation , Cell Membrane/metabolism , Crystallization , Humans , Hypercholesterolemia , Lipid Bilayers/chemistry , Lipoproteins, LDL/metabolism , Models, Biological , Oxidative Stress , Phospholipids/chemistry , Plaque, Atherosclerotic
9.
Nutrients ; 12(5)2020 May 07.
Article in English | MEDLINE | ID: mdl-32392888

ABSTRACT

Diet-based xanthophylls (zeaxanthin and lutein) are conditionally essential polar carotenoids preferentially accreted in high concentrations (1 mM) to the central retina, where they have the capacity to impart unique physiologically significant biophysical biochemical properties implicated in cell function, rescue, and survival. Macular xanthophylls interact with membrane-bound proteins and lipids to absorb/attenuate light energy, modulate oxidative stress and redox balance, and influence signal transduction cascades implicated in the pathophysiology of age-related macular degeneration. There is exclusive transport, sequestration, and appreciable bioamplification of macular xanthophylls from the circulating carotenoid pool to the retina and within the retina to regions required for high-resolution sensory processing. The distribution of diet-based macular xanthophylls and the lutein metabolite meso-zeaxanthin varies considerably by retinal eccentricity. Zeaxanthin concentrations are 2.5-fold higher than lutein in the cone-dense central fovea. This is an ~20-fold increase in the molar ratio relative to eccentric retinal regions with biochemically detectable macular xanthophylls. In this review, we discuss how the differences in the specific properties of lutein and zeaxanthin could help explain the preferential accumulation of zeaxanthin in the most vulnerable region of the macula.


Subject(s)
Eating/physiology , Fovea Centralis/metabolism , Lutein/metabolism , Nutritional Physiological Phenomena/physiology , Zeaxanthins/metabolism , Fruit , Humans , Lipid Bilayers , Lutein/chemistry , Macular Degeneration/prevention & control , Oxidation-Reduction , Oxidative Stress , Vegetables , Zeaxanthins/chemistry
10.
Curr Eye Res ; 45(2): 162-172, 2020 02.
Article in English | MEDLINE | ID: mdl-31462080

ABSTRACT

Purpose/Aim: The goal of this study is to reveal how age-related changes in phospholipid (PL) composition in the fiber cell plasma membranes of the human eye lens affect the cholesterol (Chol) content at which Chol bilayer domains (CBDs) and Chol crystals start to form.Materials and Methods: Saturation-recovery electron paramagnetic resonance with spin-labeled cholesterol analogs and differential scanning calorimetry were used to determine the Chol contents at which CBDs and cholesterol crystals, respectively, start to form in in membranes made of the major PL constituents of the plasma membrane of the human eye lens fiber cells. To preserve compositional homogeneity throughout the membrane suspension, the lipid multilamellar dispersions investigated in this work were prepared using a rapid solvent exchange method. The cholesterol content changed from 0 to 75 mol%.Results: The saturation recovery electron paramagnetic resonance results show that CBDs start to form at 33, 50, 46, and 48 mol% Chol in the phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and sphingomyelin bilayers, respectively. The differential scanning calorimetry results show that Chol crystals start to form at 50, 66, 70, and 66 mol% Chol in the phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine, and sphingomyelin bilayers, respectively.Conclusions: These results, as well those of our previous studies, indicate that the formation of CBDs precedes the formation of Chol crystals in all of the studied systems, and the appearance of each depends on the type of PL forming the bilayer. These findings contribute to a better understanding of the molecular mechanisms involved in the regulation of Chol-dependent processes in eye lens fiber cell membranes.


Subject(s)
Cell Membrane/metabolism , Cholesterol/metabolism , Lens, Crystalline/metabolism , Lipid Bilayers/metabolism , Phospholipids/chemistry , Calorimetry, Differential Scanning , Cell Membrane/chemistry , Cholesterol/chemistry , Crystallization , Electron Spin Resonance Spectroscopy , Humans , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylethanolamines/chemistry , Sphingomyelins/chemistry
11.
Cell Biochem Biophys ; 77(4): 309-317, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31625023

ABSTRACT

The cholesterol (Chol) content in the fiber cell plasma membranes of the eye lens is extremely high, exceeding the solubility threshold in the lenses of old humans. This high Chol content forms pure Chol bilayer domains (CBDs) and Chol crystals in model membranes and membranes formed from the total lipid extracts from human lenses. CBDs have been detected using electron paramagnetic resonance (EPR) spin-labeling approaches. Here, we confirm the presence of CBDs in giant unilamellar vesicles prepared using the electroformation method from Chol/1-palmitoyl-2-oleoylphosphocholine and Chol/distearoylphosphatidylcholine mixtures. Confocal microscopy experiments using phospholipid (PL) analog (1,1'-dioctadecyl-3,3,3',3'-tetramethylindocarbocyanine-5,5'-disulfonic acid) and cholesterol analog fluorescent probes (23-(dipyrrometheneboron difluoride)-24-norcholesterol) were performed, allowing us to make three major conclusions: (1) In all membranes with a Chol/PL mixing ratio (expressed as a molar ratio) >2, pure CBDs were formed within the bulk PL bilayer saturated with Chol. (2) CBDs were present as the pure Chol bilayer and not as separate patches of Chol monolayers in each leaflet of the PL bilayer. (3) CBDs, presented as single large domains, were always located at the top of giant unilamellar vesicles, independent of the change in sample orientation (right-side-up/upside-down). Results obtained with confocal microscopy and fluorescent Chol and PL analogs, combined with those obtained using EPR and spin-labeled Chol and PL analogs, contribute to the understanding of the organization of lipids in the fiber cell plasma membranes of the human eye lens.


Subject(s)
Cholesterol/chemistry , Microscopy, Confocal , Phosphatidylcholines/chemistry , Unilamellar Liposomes/chemistry , Cholesterol/metabolism , Electron Spin Resonance Spectroscopy , Fluorescent Dyes/chemistry , Humans , Lens, Crystalline/metabolism , Lipid Bilayers/chemistry , Unilamellar Liposomes/metabolism
12.
Appl Magn Reson ; 50(7): 903-918, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31244509

ABSTRACT

The stretched exponential function (SEF) was used to analyze and interpret saturation recovery (SR) electron paramagnetic resonance (EPR) data obtained from spin-labeled porcine eye-lens membranes. This function has two fitting parameters: the characteristic spin-lattice relaxation rate (T 1str -1) and the stretching parameter (ß), which ranges between zero and one. When ß = 1, the function is a single exponential. It is assumed that the SEF arises from a distribution of single exponential functions, each described by a T 1 value. Because T 1 -1s are determined primarily by the rotational diffusion of spin labels, they are a measure of membrane fluidity. Since ß describes the distribution of T 1 -1s, it can be interpreted as a measure of membrane heterogeneity. The SEF was used to analyze SR data obtained from intact cortical and nuclear fiber cell plasma membranes extracted from the eye lenses of two-year old animals and spinlabeled with phospholipid- and cholesterol-analogs. The lipid environment sensed by these probe molecules was found to be less fluid and more heterogeneous in nuclear membranes than in cortical membranes. Parameters T 1str -1 and ß were also used for a multivariate K-means cluster analysis of stretched-exponential data. This analysis indicates that SEF data can be assigned accurately to clusters in nuclear or cortical membranes. In future work, the SEF will be applied to analyze data from human eye lenses of donors with differing health histories.

13.
Nutrients ; 11(5)2019 May 15.
Article in English | MEDLINE | ID: mdl-31096723

ABSTRACT

The plasma membranes of the human lens fiber cell are overloaded with cholesterol that not only saturates the phospholipid bilayer of these membranes but also leads to the formation of pure cholesterol bilayer domains. Cholesterol level increases with age, and for older persons, it exceeds the cholesterol solubility threshold, leading to the formation of cholesterol crystals. All these changes occur in the normal lens without too much compromise to lens transparency. If the cholesterol content in the cell membranes of other organs increases to extent where cholesterol crystals forma, a pathological condition begins. In arterial cells, minute cholesterol crystals activate inflammasomes, induce inflammation, and cause atherosclerosis development. In this review, we will indicate possible factors that distinguish between beneficial and negative cholesterol action, limiting cholesterol actions to those performed through cholesterol in cell membranes and by cholesterol crystals.


Subject(s)
Cholesterol, Dietary/administration & dosage , Hypercholesterolemia/metabolism , Hypercholesterolemia/pathology , Lens, Crystalline/blood supply , Lens, Crystalline/physiology , Animals , Humans
14.
Exp Eye Res ; 178: 238-246, 2019 01.
Article in English | MEDLINE | ID: mdl-29908882

ABSTRACT

Macular xanthophylls (MXs) are distinguished from other dietary carotenoids by their high membrane solubility and preferential transmembrane orientation. Additionally, these properties enhance the chemical and physical stability of MXs in the eye retina, and maximize their protective activities. The effectiveness of MXs' protection is also enhanced by their selective accumulation in the most vulnerable domains of retinal membranes. The retina is protected by MXs mainly through blue-light filtration, quenching of the excited triplet states of potent photosensitizers, and physical quenching of singlet oxygen. To perform these physical, photo-related actions, the structure of MXs should remain intact. However, the conjugated double-bond structure of MXs makes them highly chemically reactive and susceptible to oxidation. Chemical quenching of singlet oxygen and scavenging of free radicals destroy their intact structure and consume MXs. Consequently, their physical actions, which are critical to the protection of retina, are diminished. Thus, it is timely and important to identify mechanisms whereby the chemical destruction (bleaching) of MXs in retinal membranes can be reduced. It was shown that nitroxide free radicals (spin labels) located in membranes protect MXs against destruction, and their effect is especially pronounced during the light-induced formation of singlet oxygen. That should extend and enhance their positive action in the retina through physical processes. In this review, we will discuss possible applications of this new strategy during ophthalmological procedures, which can cause acute bleaching of MXs and damage the retina through oxidative processes.


Subject(s)
Eye Proteins/physiology , Macula Lutea/chemistry , Macular Degeneration/prevention & control , Oxidative Stress , Retina/metabolism , Xanthophylls/physiology , Antioxidants/physiology , Humans , Lipid Peroxidation
15.
Cell Biochem Biophys ; 77(1): 47-59, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30460441

ABSTRACT

In this review, we consider the applications of electron paramagnetic resonance (EPR) methods to the study of the relationships between the electron transport and oxygen-exchange processes in photosynthetic systems of oxygenic type. One of the purposes of this article is to encourage scientists to use the advantageous EPR oximetry approaches to study oxygen-related electron transport processes in photosynthetic systems. The structural organization of the photosynthetic electron transfer chain and the EPR approaches to the measurements of molecular oxygen (O2) with O2-sensitive species (nitroxide spin labels and solid paramagnetic particles) are briefly reviewed. In solution, the collision of O2 with spin probes causes the broadening of their EPR spectra and the reduction of their spin-lattice relaxation times. Based on these effects, tools for measuring O2 concentration and O2 diffusion in biological systems have been developed. These methods, named "spin-label oximetry," include not only nitroxide spin labels, but also other stable-free radicals with narrow EPR lines, as well as particulate probes with EPR spectra sensitive to molecular oxygen (lithium phthalocyanine, coals, and India ink). Applications of EPR approaches for measuring O2 evolution and consumption are illustrated using examples of photosynthetic systems of oxygenic type, chloroplasts in situ (green leaves), and cyanobacteria.


Subject(s)
Electron Spin Resonance Spectroscopy , Oxygen/chemistry , Photosynthesis , Chloroplasts/metabolism , Electron Transport , Nitrogen Oxides/chemistry , Oxidation-Reduction , Oximetry , Photosynthetic Reaction Center Complex Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins/metabolism , Spin Labels
16.
Exp Eye Res ; 178: 72-81, 2019 01.
Article in English | MEDLINE | ID: mdl-30278157

ABSTRACT

Four purported lipid domains are expected in plasma membranes of the eye lens fiber cells. Three of these domains, namely, bulk, boundary, and trapped lipids, have been detected. The cholesterol bilayer domain (CBD), which has been detected in lens lipid membranes prepared from the total lipids extracted from fiber cell plasma membranes, has not yet been detected in intact fiber cell plasma membranes. Here, a saturation-recovery electron paramagnetic resonance spin-labeling method has been developed that allows identification of CBDs in intact fiber cell plasma membranes of eye lenses. This method is based on saturation-recovery signal measurements of the cholesterol-analog spin label located in the lipid bilayer portion of intact fiber cell membranes as a function of the partial pressure of molecular oxygen with which the samples are equilibrated. The capabilities and limitations of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses where CBDs were detected in porcine nuclear intact membranes for which CBDs were also detected in lens lipid membranes. CBDs were not detected in porcine cortical intact and lens lipid membranes. CBDs were detected in intact membranes isolated from both cortical and nuclear fiber cells of lenses obtained from human donors. The cholesterol content in fiber cell membranes of these donors was always high enough to induce the formation of CBDs in cortical as well as nuclear lens lipid membranes. The results obtained for intact membranes, when combined with those obtained for lens lipid membranes, advance our understanding of the role of high cholesterol content and CBDs in lens biology, aging, and/or cataract formation.


Subject(s)
Cell Membrane/chemistry , Cholesterol/chemistry , Electron Spin Resonance Spectroscopy/methods , Lens Cortex, Crystalline/chemistry , Lens Nucleus, Crystalline/chemistry , Lipid Bilayers/chemistry , Membrane Lipids/chemistry , Animals , Hydrophobic and Hydrophilic Interactions , Membrane Fluidity , Spin Labels , Swine
17.
Biochim Biophys Acta Biomembr ; 1860(2): 434-441, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29079282

ABSTRACT

In the eye lens, the oxygen partial pressure is very low and the cholesterol (Chol) content in cell membranes is very high. Disturbance of these quantities results in cataract development. In human lens membranes, both bulk phospholipid-Chol domains and the pure Chol bilayer domains (CBDs) were experimentally detected. It is hypothesized that the CBD constitutes a significant barrier to oxygen transport into the lens. Transmembrane profiles of the oxygen diffusion-concentration product, obtained with electron paramagnetic resonance spin-labeling methods, allow evaluation of the oxygen permeability (PM) of phospholipid membranes but not the CBD. Molecular dynamics simulation can independently provide components of the product across any bilayer domain, thus allowing evaluation of the PM across the CBD. Therefore, to test the hypothesis, MD simulation was used. Three bilayers containing palmitoyl-oleoyl-phosphorylcholine (POPC) and Chol were built. The pure Chol bilayer modeled the CBD, the 1:1 POPC-Chol bilayer modeled the bulk membrane in which the CBD is embedded, and the POPC bilayer was a reference. To each model, 200 oxygen molecules were added. After equilibration, the oxygen concentration and diffusion profiles were calculated for each model and multiplied by each other. From the respective product profiles, the PM of each bilayer was calculated. Favorable comparison with experimental data available only for the POPC and POPC-Chol bilayers validated these bilayer models and allowed the conclusion that oxygen permeation across the CBD is ~10 smaller than across the bulk membrane, supporting the hypothesis that the CBD is a barrier to oxygen transport into the eye lens.


Subject(s)
Cholesterol/metabolism , Lens, Crystalline/metabolism , Lipid Bilayers/metabolism , Oxygen/metabolism , Biological Transport , Cataract/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Cholesterol/chemistry , Diffusion , Electron Spin Resonance Spectroscopy/methods , Humans , Kinetics , Lipid Bilayers/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Spin Labels
18.
Cell Biochem Biophys ; 75(3-4): 387-398, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28660427

ABSTRACT

The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.


Subject(s)
Cholesterol/metabolism , Lens, Crystalline/metabolism , Lipid Bilayers/metabolism , Cholesterol/chemistry , Electron Spin Resonance Spectroscopy , Humans , Lens, Crystalline/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Phospholipids/chemistry , Phospholipids/metabolism
19.
Cell Biochem Biophys ; 75(3-4): 259-273, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28555359

ABSTRACT

A multi-arm W-band (94 GHz) electron paramagnetic resonance spectrometer that incorporates a loop-gap resonator with high bandwidth is described. A goal of the instrumental development is detection of free induction decay following rapid sweep of the microwave frequency across the spectrum of a nitroxide radical at physiological temperature, which is expected to lead to a capability for Fourier transform electron paramagnetic resonance. Progress toward this goal is a theme of the paper. Because of the low Q-value of the loop-gap resonator, it was found necessary to develop a new type of automatic frequency control, which is described in an appendix. Path-length equalization, which is accomplished at the intermediate frequency of 59 GHz, is analyzed. A directional coupler is favored for separation of incident and reflected power between the bridge and the loop-gap resonator. Microwave leakage of this coupler is analyzed. An oversize waveguide with hyperbolic-cosine tapers couples the bridge to the loop-gap resonator, which results in reduced microwave power and signal loss. Benchmark sensitivity data are provided. The most extensive application of the instrument to date has been the measurement of T1 values using pulse saturation recovery. An overview of that work is provided.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Electron Spin Resonance Spectroscopy/instrumentation , Fourier Analysis , Microwaves , Signal-To-Noise Ratio
20.
Cell Biochem Biophys ; 75(3-4): 369-385, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28417231

ABSTRACT

Lipid composition determines membrane properties, and cholesterol plays a major role in this determination as it regulates membrane fluidity and permeability, as well as induces the formation of coexisting phases and domains in the membrane. Biological membranes display a very diverse lipid composition, the lateral organization of which plays a crucial role in regulating a variety of membrane functions. We hypothesize that, during biological evolution, membranes with a particular cholesterol content were selected to perform certain functions in the cells of eukaryotic organisms. In this review, we discuss the major membrane properties induced by cholesterol, and their relationship to certain membrane functions.


Subject(s)
Cholesterol/chemistry , Electron Spin Resonance Spectroscopy , Lipid Bilayers/chemistry , Cholesterol/metabolism , Hydrophobic and Hydrophilic Interactions , Lipid Bilayers/metabolism , Membrane Fluidity , Phospholipids/chemistry , Phospholipids/metabolism , Solubility , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL