Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38585789

ABSTRACT

The transcription repressor REST in the dorsal root ganglion (DRG) is upregulated by peripheral nerve injury and promotes the development of chronic pain. However, the genes targeted by REST in neuropathic pain development remain unclear. The expression levels of 4 opioid receptor (Oprm1, Oprd1, Oprl1, Oprk1) and the cannabinoid CB1 receptor (Cnr1) genes in the DRG regulate nociception. In this study, we determined the role of REST in the control of their expression in the DRG induced by spared nerve injury (SNI) in both male and female mice. Transcriptomic analyses of male mouse DRGs followed by quantitative reverse transcription polymerase chain reaction analyses of both male and female mouse DRGs showed that SNI upregulated expression of Rest and downregulated mRNA levels of all 4 opioid receptor and Cnr1 genes, but Oprm1 was upregulated in female mice. Analysis of publicly available bioinformatic data suggested that REST binds to the promoter regions of Oprm1 and Cnr1. Chromatin immunoprecipitation analyses indicated differing levels of REST at these promoters in male and female mice. Full-length Rest conditional knockout in primary sensory neurons reduced SNI-induced pain hypersensitivity and rescued the SNI-induced reduction in the expression of Oprd1 and Cnr1 in the DRG in both male and female mice. Our results suggest that nerve injury represses the transcription of Oprd1 and Cnr1 via REST in primary sensory neurons and that REST is a potential therapeutic target for neuropathic pain.

2.
PLoS Biol ; 21(1): e3001946, 2023 01.
Article in English | MEDLINE | ID: mdl-36719873

ABSTRACT

Large carnivores have long fascinated human societies and have profound influences on ecosystems. However, their conservation represents one of the greatest challenges of our time, particularly where attacks on humans occur. Where human recreational and/or livelihood activities overlap with large carnivore ranges, conflicts can become particularly serious. Two different scenarios are responsible for such overlap: In some regions of the world, increasing human populations lead to extended encroachment into large carnivore ranges, which are subject to increasing contraction, fragmentation, and degradation. In other regions, human and large carnivore populations are expanding, thus exacerbating conflicts, especially in those areas where these species were extirpated and are now returning. We thus face the problem of learning how to live with species that can pose serious threats to humans. We collected a total of 5,440 large carnivore (Felidae, Canidae, and Ursidae; 12 species) attacks worldwide between 1950 and 2019. The number of reported attacks increased over time, especially in lower-income countries. Most attacks (68%) resulted in human injuries, whereas 32% were fatal. Although attack scenarios varied greatly within and among species, as well as in different areas of the world, factors triggering large carnivore attacks on humans largely depend on the socioeconomic context, with people being at risk mainly during recreational activities in high-income countries and during livelihood activities in low-income countries. The specific combination of local socioeconomic and ecological factors is thus a risky mix triggering large carnivore attacks on humans, whose circumstances and frequencies cannot only be ascribed to the animal species. This also implies that effective measures to reduce large carnivore attacks must also consider the diverse local ecological and social contexts.


Subject(s)
Canidae , Carnivora , Ursidae , Animals , Humans , Ecosystem , Conservation of Natural Resources/methods
3.
Cell Death Dis ; 11(11): 946, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144577

ABSTRACT

MCL1, an anti-apoptotic protein that controls chemosensitivity and cell fate through its regulation of intrinsic apoptosis, has been identified as a high-impact target in anti-cancer therapeutic development. With MCL1-specific inhibitors currently in clinical trials, it is imperative that we understand the roles that MCL1 plays in cells, especially when targeting the Bcl-2 homology 3 (BH3) pocket, the central region of MCL1 that mediates apoptotic regulation. Here, we establish that MCL1 has a direct role in controlling p73 transcriptional activity, which modulates target genes associated with DNA damage response, apoptosis, and cell cycle progression. This interaction is mediated through the reverse BH3 (rBH3) motif in the p73 tetramerization domain, which restricts p73 assembly on DNA. Here, we provide a novel mechanism for protein-level regulation of p73 transcriptional activity by MCL1, while also framing a foundation for studying MCL1 inhibitors in combination with platinum-based chemotherapeutics. More broadly, this work expands the role of Bcl-2 family signaling beyond cell fate regulation.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Tumor Protein p73/genetics , Apoptosis , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Proliferation , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Tumor Cells, Cultured , Tumor Protein p73/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...