Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 68
Filter
1.
Antimicrob Agents Chemother ; : e0042024, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38780261

ABSTRACT

Capsid assembly mediated by hepatitis B virus (HBV) core protein (HBc) is an essential part of the HBV replication cycle, which is the target for different classes of capsid assembly modulators (CAMs). While both CAM-A ("aberrant") and CAM-E ("empty") disrupt nucleocapsid assembly and reduce extracellular HBV DNA, CAM-As can also reduce extracellular HBV surface antigen (HBsAg) by triggering apoptosis of HBV-infected cells in preclinical mouse models. However, there have not been substantial HBsAg declines in chronic hepatitis B (CHB) patients treated with CAM-As to date. To investigate this disconnect, we characterized the antiviral activity of tool CAM compounds in HBV-infected primary human hepatocytes (PHHs), as well as in HBV-infected human liver chimeric mice and mice transduced with adeno-associated virus-HBV. Mechanistic studies in HBV-infected PHH revealed that CAM-A, but not CAM-E, induced a dose-dependent aggregation of HBc in the nucleus which is negatively regulated by the ubiquitin-binding protein p62. We confirmed that CAM-A, but not CAM-E, induced HBc-positive cell death in both mouse models via induction of apoptotic and inflammatory pathways and demonstrated that the degree of HBV-positive cell loss was positively correlated with intrahepatic HBc levels. Importantly, we determined that there is a significantly lower level of HBc per hepatocyte in CHB patient liver biopsies than in either of the HBV mouse models. Taken together, these data confirm that CAM-As have a unique secondary mechanism with the potential to kill HBc-positive hepatocytes. However, this secondary mechanism appears to require higher intrahepatic HBc levels than is typically observed in CHB patients, thereby limiting the therapeutic potential.

2.
J Pharm Sci ; 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38369022

ABSTRACT

The purpose of this study was to develop an in vitro release testing (IVRT) strategy to predict the pre-clinical performance of single agent and combination long acting injectable (LAI) suspension products. Two accelerated IVRT methods were developed using USP apparatus 2 to characterize initial, intermediate, and terminal phases of drug release. Initial and intermediate phases were captured using a suspension cup with moderate agitation to ensure a constant, low surface area exposure of the LAI suspension to the release media. The terminal phase was obtained by exposing the LAI suspension to a high initial paddle speed. This resulted in smaller suspension particulates with high cumulative surface area that were dispersed throughout the release media, enabling rapid drug release. The in vitro release profiles obtained with these two methods in 48 h or less were independently time scaled to reflect the in vivo time scale of approximately 1800 h. Level-A in vitro in vivo correlations (IVIVCs) were separately developed for each method and active pharmaceutical ingredient (API) using in vivo absorption profiles obtained by deconvolution of rat plasma concentration-time profiles. The IVIVCs were successfully validated for each API. This work provides a framework for evaluating individual phases of drug release of complex LAIs to ultimately predict their in vivo performance.

3.
Clin Pharmacokinet ; 63(2): 241-253, 2024 02.
Article in English | MEDLINE | ID: mdl-38236562

ABSTRACT

BACKGROUND AND OBJECTIVE: Lenacapavir (LEN) is a novel, first-in-class, multistage, selective inhibitor of human immunodeficiency virus type 1 (HIV-1) capsid function recently approved for the treatment of HIV-1 infection in heavily treatment-experienced adults with multidrug-resistant HIV-1 infection. The purpose of this multicohort study was to evaluate the pharmacokinetics, metabolism, excretion, safety, and tolerability of LEN following a single intravenous (IV) infusion of 10 mg LEN or 20 mg [14C]LEN in healthy participants. METHODS: Twenty-one healthy adult participants were enrolled into the study and received either a single IV dose of 10 mg LEN (n = 8 active, n = 3 placebo; cohort 1) or a single IV dose of 20 mg [14C]LEN containing 200 µCi (n = 10; cohort 2). Blood, urine, and feces samples (when applicable) were collected after dosing, and radioactivity (cohort 2) was assessed using liquid scintillation counting in both plasma and excreta. LEN in plasma was quantified by liquid chromatography (LC) tandem mass spectroscopy (MS/MS) method bioanalysis. Metabolite profiling in plasma and excreta were performed using LC-fraction collect (FC)-high-resolution MS and LC-FC-accelerator mass spectrometry in plasma. RESULTS: Between the 10 mg and 20 mg doses of LEN, the observed plasma exposure of LEN doubled, while the elimination half-life was similar. Following administration of 20 mg [14C]LEN (200 µCi), the mean cumulative recovery of [14C] radioactivity was 75.9% and 0.24% from feces and urine, respectively. The mean whole [14C] blood-to-plasma concentration ratio was 0.5-0.7, which showed a low distribution of LEN to red blood cells. Intact LEN was the predominant circulating species in plasma (representing 68.8% of circulating radioactivity), and no single metabolite contributed to > 10% of total radioactivity exposure through 1176 h postdose. Similarly, intact LEN was the most abundant component (32.9% of administered dose; 75.9% of recovered dose) measured in feces, with metabolites accounting for trace amounts. These results suggest metabolism of LEN is not a primary pathway of elimination. Of the metabolites observed in the feces, the three most abundant metabolites were direct phase 2 conjugates (glucuronide, hexose, and pentose conjugates), with additional metabolites formed to a lesser extent via other pathways. The administered LEN IV doses were generally safe and well-tolerated across participants in this study. CONCLUSIONS: The results of this mass balance study indicated that LEN was majorly eliminated as intact LEN via the feces. The renal pathway played a minor role in LEN elimination (0.24%). In addition, no major circulating metabolites in plasma or feces were found, indicating minimal metabolism of LEN.


Subject(s)
Anti-HIV Agents , HIV-1 , Adult , Humans , Infusions, Intravenous , Capsid , Healthy Volunteers , Tandem Mass Spectrometry , Biotransformation , Feces/chemistry , Administration, Oral
4.
Drug Metab Dispos ; 52(3): 236-241, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38123963

ABSTRACT

Rifampicin (RIF) is a mixed-mode perpetrator that produces pleiotropic effects on liver cytochrome P450 enzymes and drug transporters. To assess the complex drug-drug interaction liabilities of RIF in vivo, a known probe substrate, midazolam (MDZ), along with multiple endogenous biomarkers were simultaneously monitored in beagle dogs before and after a 7-day treatment period by RIF at 20 mg/kg per day. Confirmed by the reduced MDZ plasma exposure and elevated 4ß-hydroxycholesterol (4ß-HC, biomarker of CYP3A activities) level, CYP3A was significantly induced after repeated RIF doses, and such induction persisted for 3 days after cessation of the RIF administration. On the other hand, increased plasma levels of coproporphyrin (CP)-I and III [biomarkers of organic anion transporting polypeptides 1b (Oatp1b) activities] were observed after the first dose of RIF. Plasma CPs started to decline as RIF exposure decreased, and they returned to baseline 3 days after cessation of the RIF administration. The data suggested the acute (inhibitory) and chronic (inductive) effects of RIF on Oatp1b and CYP3A enzymes, respectively, and a 3-day washout period is deemed adequate to remove superimposed Oatp1b inhibition from CYP3A induction. In addition, apparent self-induction of RIF was observed as its terminal half-life was significantly altered after multiple doses. Overall, our investigation illustrated the need for appropriate timing of modulator dosing to differentiate between transporter inhibition and enzyme induction. As further indicated by the CP data, induction of Oatp1b activities was not likely after repeated RIF administration. SIGNIFICANCE STATEMENT: This investigation demonstrated the utility of endogenous biomarkers towards complex drug-drug interactions by rifampicin (RIF) and successfully determined the optimal timing to differentiate between transporter inhibition and enzyme induction. Based on experimental evidence, Oatp1b induction following repeated RIF administration was unlikely, and apparent self-induction of RIF elimination was observed.


Subject(s)
Cytochrome P-450 CYP3A , Rifampin , Dogs , Animals , Rifampin/pharmacology , Pharmaceutical Preparations , Midazolam , Drug Interactions , Biomarkers
5.
Mol Pharm ; 20(12): 6213-6225, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-37917742

ABSTRACT

Lenacapavir (LEN) is a picomolar first-in-class capsid inhibitor of human immunodeficiency virus type 1 (HIV-1) with a multistage mechanism of action and no known cross resistance to other existing antiretroviral (ARV) drug classes. LEN exhibits a low aqueous solubility and exceptionally low systemic clearance following intravenous (IV) administration in nonclinical species and humans. LEN formulated in an aqueous suspension or a PEG/water solution formulation showed sustained plasma exposure levels with no unintended rapid drug release following subcutaneous (SC) administration to rats and dogs. A high total fraction dose release was observed with both formulations. The long-acting pharmacokinetics (PK) were recapitulated in humans following SC administration of both formulations. The SC PK profiles displayed two-phase absorption kinetics in both animals and humans with an initial fast-release absorption phase, followed by a slow-release absorption phase. Noncompartmental and compartmental analyses informed the LEN systemic input rate from the SC depot and exit rate from the body. Modeling-enabled deconvolution of the input rates from two processes: absorption of the soluble fraction (minor) from a direct fast-release process leading to the early PK phase and absorption of the precipitated fraction (major) from an indirect slow-release process leading to the later PK phase. LEN SC PK showed flip-flop kinetics due to the input rate being substantially slower than the systemic exit rate. LEN input rates via the slow-release process in humans were slower than those in both rats and dogs. Overall, the combination of high potency, exceptional stability, and optimal release rate from the injection depot make LEN well suited for a parenteral long-acting formulation that can be administered once up to every 6 months in humans for the prevention and treatment of HIV-1.


Subject(s)
Anti-HIV Agents , HIV-1 , Humans , Rats , Animals , Dogs , Anti-Retroviral Agents , Capsid , Anti-HIV Agents/pharmacology , Capsid Proteins
6.
J Med Chem ; 66(17): 11701-11717, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37596939

ABSTRACT

Remdesivir 1 is an phosphoramidate prodrug that releases the monophosphate of nucleoside GS-441524 (2) into lung cells, thereby forming the bioactive triphosphate 2-NTP. 2-NTP, an analog of ATP, inhibits the SARS-CoV-2 RNA-dependent RNA polymerase replication and transcription of viral RNA. Strong clinical results for 1 have prompted interest in oral approaches to generate 2-NTP. Here, we describe the discovery of a 5'-isobutyryl ester prodrug of 2 (GS-5245, Obeldesivir, 3) that has low cellular cytotoxicity and 3-7-fold improved oral delivery of 2 in monkeys. Prodrug 3 is cleaved presystemically to provide high systemic exposures of 2 that overcome its less efficient metabolism to 2-NTP, leading to strong SARS-CoV-2 antiviral efficacy in an African green monkey infection model. Exposure-based SARS-CoV-2 efficacy relationships resulted in an estimated clinical dose of 350-400 mg twice daily. Importantly, all SARS-CoV-2 variants remain susceptible to 2, which supports development of 3 as a promising COVID-19 treatment.


Subject(s)
COVID-19 , Prodrugs , Chlorocebus aethiops , Humans , Animals , SARS-CoV-2 , COVID-19 Drug Treatment , Nucleosides , Prodrugs/pharmacology , Prodrugs/therapeutic use , RNA, Viral , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Furans
7.
Xenobiotica ; 52(9-11): 973-985, 2022.
Article in English | MEDLINE | ID: mdl-36546430

ABSTRACT

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy®, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The absorption, metabolism, distribution, and elimination (ADME) characteristics of BIC were determined through in vivo nonclinical and clinical studies (IND 121318).[14C]BIC was rapidly absorbed orally in mice, rats, monkeys and human. The cumulative dose recovery was high in nonclinical species (>80%) and humans (95.3%), with most of the excreted dose recovered in faeces. Quantifiable radioactivity with declining concentration was observed in rat tissues suggesting reversible binding. Unchanged BIC was the most abundant circulating component in all species along with two notable metabolites M20 (a sulphate conjugate of hydroxylated BIC) and M15 (a glucuronide conjugate of BIC). BIC was primarily eliminated by hepatic metabolism followed by excretion of the biotransformed products into faeces. In vitro drug-drug interaction (DDI) studies with M15 and M20 demonstrated that no clinically relevant interactions were expected.Overall, BIC is a novel and potent INSTI with a favourable resistance, PK, and ADME profile that provides important improvements over other currently available INSTIs for the treatment of HIV-1.


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV-1 , Humans , Animals , Mice , Rats , HIV Integrase Inhibitors/pharmacology , HIV Integrase Inhibitors/therapeutic use , HIV Infections/drug therapy , Pyridones , Amides , Heterocyclic Compounds, 3-Ring/pharmacology , Heterocyclic Compounds, 3-Ring/therapeutic use , Heterocyclic Compounds, 4 or More Rings , Integrases/therapeutic use
8.
Chem Res Toxicol ; 35(8): 1400-1409, 2022 08 15.
Article in English | MEDLINE | ID: mdl-35833852

ABSTRACT

Acyl glucuronides (AGs) are common metabolites of carboxylic acid-containing compounds. In some circumstances, AGs are suspected to be involved in drug toxicity due to formation of acyl migration products that bind covalently to cellular components. The risk of this adverse effect has been found to be correlated with the chemical stability of the AG, and assays have been described that monitor acyl migration by liquid chromatography coupled with mass spectrometry (LC-MS). This analysis can be challenging as it requires baseline chromatographic separation of the unmigrated 1-ß-acyl glucuronide from the migrated isomers and thus needs to be individually optimized for each aglycone. Therefore, a high-throughput assay that eliminates LC method development is desirable. Herein, we report an improved acyl glucuronide stability assay based on the rate of 18O-incorporation from [18O] water, which is compatible with high-throughput bioanalytical LC-MS workflows. Synthetic AGs with shorter migration half-lives showed faster incorporation of 18O. The level of differential incorporation of 18O following a 24 h incubation correlates well with the migration tendency of AGs. This assay was developed further, exploring in situ generation of AGs by human hepatic microsomal fraction. The results from 18 in situ-formed acyl glucuronides were similar to those obtained using authentic reference standards. In this format, this new 18O-labeling method offers a simplified workflow, requires no LC method development or AG reference standard, and thus facilitates AG liability assessment in early drug discovery.


Subject(s)
Carboxylic Acids , Glucuronides , Chromatography, Liquid/methods , Glucuronides/metabolism , Humans , Isomerism , Mass Spectrometry
9.
Antiviral Res ; 203: 105329, 2022 07.
Article in English | MEDLINE | ID: mdl-35525335

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 pandemic, has infected over 260 million people over the past 2 years. Remdesivir (RDV, VEKLURY®) is currently the only antiviral therapy fully approved by the FDA for the treatment of COVID-19. The parent nucleoside of RDV, GS-441524, exhibits antiviral activity against numerous respiratory viruses including SARS-CoV-2, although at reduced in vitro potency compared to RDV in most assays. Here we find in both human alveolar and bronchial primary cells, GS-441524 is metabolized to the pharmacologically active GS-441524 triphosphate (TP) less efficiently than RDV, which correlates with a lower in vitro SARS-CoV-2 antiviral activity. In vivo, African green monkeys (AGM) orally dosed with GS-441524 yielded low plasma levels due to limited oral bioavailability of <10%. When GS-441524 was delivered via intravenous (IV) administration, although plasma concentrations of GS-441524 were significantly higher, lung TP levels were lower than observed from IV RDV. To determine the required systemic exposure of GS-441524 associated with in vivo antiviral efficacy, SARS-CoV-2 infected AGMs were treated with a once-daily IV dose of either 7.5 or 20 mg/kg GS-441524 or IV RDV for 5 days and compared to vehicle control. Despite the reduced lung TP formation compared to IV dosing of RDV, daily treatment with IV GS-441524 resulted in dose-dependent efficacy, with the 20 mg/kg GS-441524 treatment resulting in significant reductions of SARS-CoV-2 replication in the lower respiratory tract of infected animals. These findings demonstrate the in vivo SARS-CoV-2 antiviral efficacy of GS-441524 and support evaluation of its orally bioavailable prodrugs as potential therapies for COVID-19.


Subject(s)
COVID-19 Drug Treatment , Adenosine/analogs & derivatives , Animals , Antiviral Agents/therapeutic use , Chlorocebus aethiops , Humans , Pandemics , SARS-CoV-2
10.
Sci Transl Med ; 14(643): eabm3410, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35315683

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic remains uncontrolled despite the rapid rollout of safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. In addition, the emergence of SARS-CoV-2 variants of concern, with their potential to escape neutralization by therapeutic monoclonal antibodies, emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parent nucleoside of remdesivir, which targets the highly conserved virus RNA-dependent RNA polymerase. GS-621763 exhibited antiviral activity against SARS-CoV-2 in lung cell lines and two different human primary lung cell culture systems. GS-621763 was also potently antiviral against a genetically unrelated emerging coronavirus, Middle East respiratory syndrome CoV (MERS-CoV). The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 administration reduced viral load and lung pathology; treatment also improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral that has recently received EUA approval, proved both drugs to be similarly efficacious in mice. These data support the exploration of GS-441524 oral prodrugs for the treatment of COVID-19.


Subject(s)
COVID-19 Drug Treatment , Coronavirus Infections , Prodrugs , Adenosine/analogs & derivatives , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Humans , Mice , Nucleosides , Parents , Prodrugs/pharmacology , Prodrugs/therapeutic use , SARS-CoV-2
11.
Antiviral Res ; 198: 105246, 2022 02.
Article in English | MEDLINE | ID: mdl-35032523

ABSTRACT

The utility of remdesivir treatment in COVID-19 patients is currently limited by the necessity to administer this antiviral intravenously, which has generally limited its use to hospitalized patients. Here, we tested a novel, subcutaneous formulation of remdesivir in the rhesus macaque model of SARS-CoV-2 infection that was previously used to establish the efficacy of remdesivir against this virus in vivo. Compared to vehicle-treated animals, macaques treated with subcutaneous remdesivir from 12 h through 6 days post inoculation showed reduced signs of respiratory disease, a reduction of virus replication in the lower respiratory tract, and an absence of interstitial pneumonia. Thus, early subcutaneous administration of remdesivir can protect from lower respiratory tract disease caused by SARS-CoV-2.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Lung Diseases, Interstitial/prevention & control , SARS-CoV-2/drug effects , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/pharmacokinetics , Adenosine Monophosphate/therapeutic use , Administration, Cutaneous , Alanine/administration & dosage , Alanine/pharmacokinetics , Alanine/therapeutic use , Animals , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Disease Models, Animal , Female , Lung/pathology , Lung/virology , Macaca mulatta , Male , Viral Load/drug effects , Virus Replication/drug effects
12.
Sci Transl Med ; 14(633): eabl8282, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-34968150

ABSTRACT

Remdesivir (RDV) is a nucleotide analog prodrug with demonstrated clinical benefit in patients with coronavirus disease 2019 (COVID-19). In October 2020, the US FDA approved intravenous (IV) RDV as the first treatment for hospitalized COVID-19 patients. Furthermore, RDV has been approved or authorized for emergency use in more than 50 countries. To make RDV more convenient for non-hospitalized patients earlier in disease, alternative routes of administration are being evaluated. Here, we investigated the pharmacokinetics and efficacy of RDV administered by head dome inhalation in African green monkeys (AGM). Relative to an IV administration of RDV at 10 mg/kg, an approximately 20-fold lower dose administered by inhalation produced comparable concentrations of the pharmacologically active triphosphate in lower respiratory tract tissues. Distribution of the active triphosphate into the upper respiratory tract was also observed following inhaled RDV exposure. Inhalation RDV dosing resulted in lower systemic exposures to RDV and its metabolites as compared with IV RDV dosing. An efficacy study with repeated dosing of inhaled RDV in an AGM model of SARS-CoV-2 infection demonstrated reductions in viral replication in bronchoalveolar lavage fluid and respiratory tract tissues compared with placebo. Efficacy was observed with inhaled RDV administered once daily at a pulmonary deposited dose of 0.35 mg/kg beginning approximately 8 hours post-infection. Moreover, the efficacy of inhaled RDV was similar to that of IV RDV administered once at 10 mg/kg followed by 5 mg/kg daily in the same study. Together, these findings support further clinical development of inhalation RDV.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Animals , Antiviral Agents/pharmacokinetics , Chlorocebus aethiops , Humans , Primates , SARS-CoV-2 , Viral Load
13.
Xenobiotica ; 52(12): 1020-1030, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36701274

ABSTRACT

Bictegravir (BIC) is a potent small-molecule integrase strand-transfer inhibitor (INSTI) and a component of Biktarvy®, a single-tablet combination regimen that is currently approved for the treatment of human immunodeficiency virus type 1 (HIV-1) infection. The in vitro properties, pharmacokinetics (PK), and drug-drug interaction (DDI) profile of BIC were characterised in vitro and in vivo.BIC is a weakly acidic, ionisable, lipophilic, highly plasma protein-bound BCS class 2 molecule, which makes it difficult to predict human PK using standard methods. Its systemic plasma clearance is low, and the volume of distribution is approximately the volume of extracellular water in nonclinical species. BIC metabolism is predominantly mediated by cytochrome P450 enzyme (CYP) 3A and UDP-glucuronosyltransferase 1A1. BIC shows a low potential to perpetrate clinically meaningful DDIs via known drug metabolising enzymes or transporters.The human PK of BIC was predicted using a combination of bioavailability and volume of distribution scaled from nonclinical species and a modified in vitro-in vivo correlation (IVIVC) correction for clearance. Phase 1 studies in healthy subjects largely bore out the prediction and supported the methods used. The approach presented herein could be useful for other drug molecules where standard projections are not sufficiently accurate. .


Subject(s)
HIV Infections , HIV Integrase Inhibitors , HIV-1 , Humans , Amides , Drug Interactions , Heterocyclic Compounds, 3-Ring/pharmacokinetics , HIV Infections/drug therapy , HIV Integrase Inhibitors/pharmacokinetics , Pyridones
14.
Ann Pediatr Cardiol ; 14(3): 422-427, 2021.
Article in English | MEDLINE | ID: mdl-34667421

ABSTRACT

This report describes two cases of tachycardia-induced cardiomyopathy secondary to incessant ectopic atrial tachycardia (EAT) in an infant presenting with severe left ventricular dysfunction and hemodynamic instability. The two cases were managed differently. The first required mechanical ventilation and was resistant to conventional antiarrhythmic drugs. After the initiation of enteral ivabradine (0.15mg/kg) the heart rate slowed with significant improvement in hemodynamics, peripheral perfusion and sinus rhythm was restored after 12 hours. Ivabradine was continued and the patient was discharged home after 10 days of hospitalization. The second case was managed by early initiation of ivabradine and resulted in restoration of sinus rhythm within 4 hours, thus avoiding trials of conventional anti-arrhythmic drugs with unstable hemodynamic profile. The infant was discharged after 5 days of hospitalization on ivabradine..

15.
bioRxiv ; 2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34545367

ABSTRACT

The COVID-19 pandemic remains uncontrolled despite the rapid rollout of safe and effective SARS-CoV-2 vaccines, underscoring the need to develop highly effective antivirals. In the setting of waning immunity from infection and vaccination, breakthrough infections are becoming increasingly common and treatment options remain limited. Additionally, the emergence of SARS-CoV-2 variants of concern with their potential to escape therapeutic monoclonal antibodies emphasizes the need to develop second-generation oral antivirals targeting highly conserved viral proteins that can be rapidly deployed to outpatients. Here, we demonstrate the in vitro antiviral activity and in vivo therapeutic efficacy of GS-621763, an orally bioavailable prodrug of GS-441524, the parental nucleoside of remdesivir, which targets the highly conserved RNA-dependent RNA polymerase. GS-621763 exhibited significant antiviral activity in lung cell lines and two different human primary lung cell culture systems. The dose-proportional pharmacokinetic profile observed after oral administration of GS-621763 translated to dose-dependent antiviral activity in mice infected with SARS-CoV-2. Therapeutic GS-621763 significantly reduced viral load, lung pathology, and improved pulmonary function in COVID-19 mouse model. A direct comparison of GS-621763 with molnupiravir, an oral nucleoside analog antiviral currently in human clinical trial, proved both drugs to be similarly efficacious. These data demonstrate that therapy with oral prodrugs of remdesivir can significantly improve outcomes in SARS-CoV-2 infected mice. Thus, GS-621763 supports the exploration of GS-441524 oral prodrugs for the treatment of COVID-19 in humans.

16.
Antimicrob Agents Chemother ; 65(9): e0060221, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34125594

ABSTRACT

Remdesivir (RDV; GS-5734, Veklury), the first FDA-approved antiviral to treat COVID-19, is a single-diastereomer monophosphoramidate prodrug of an adenosine analogue. RDV is taken up in the target cells and metabolized in multiple steps to form the active nucleoside triphosphate (TP) (GS-443902), which, in turn, acts as a potent and selective inhibitor of multiple viral RNA polymerases. In this report, we profiled the key enzymes involved in the RDV metabolic pathway with multiple parallel approaches: (i) bioinformatic analysis of nucleoside/nucleotide metabolic enzyme mRNA expression using public human tissue and lung single-cell bulk mRNA sequence (RNA-seq) data sets, (ii) protein and mRNA quantification of enzymes in human lung tissue and primary lung cells, (iii) biochemical studies on the catalytic rate of key enzymes, (iv) effects of specific enzyme inhibitors on the GS-443902 formation, and (v) the effects of these inhibitors on RDV antiviral activity against SARS-CoV-2 in cell culture. Our data collectively demonstrated that carboxylesterase 1 (CES1) and cathepsin A (CatA) are enzymes involved in hydrolyzing RDV to its alanine intermediate MetX, which is further hydrolyzed to the monophosphate form by histidine triad nucleotide-binding protein 1 (HINT1). The monophosphate is then consecutively phosphorylated to diphosphate and triphosphate by cellular phosphotransferases. Our data support the hypothesis that the unique properties of RDV prodrug not only allow lung-specific accumulation critical for the treatment of respiratory viral infection such as COVID-19 but also enable efficient intracellular metabolism of RDV and its MetX to monophosphate and successive phosphorylation to form the active TP in disease-relevant cells.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Humans , Lung , Nerve Tissue Proteins
17.
J Med Chem ; 64(8): 5001-5017, 2021 04 22.
Article in English | MEDLINE | ID: mdl-33835812

ABSTRACT

A discovery program targeting respiratory syncytial virus (RSV) identified C-nucleoside 4 (RSV A2 EC50 = 530 nM) as a phenotypic screening lead targeting the RSV RNA-dependent RNA polymerase (RdRp). Prodrug exploration resulted in the discovery of remdesivir (1, GS-5734) that is >30-fold more potent than 4 against RSV in HEp-2 and NHBE cells. Metabolism studies in vitro confirmed the rapid formation of the active triphosphate metabolite, 1-NTP, and in vivo studies in cynomolgus and African Green monkeys demonstrated a >10-fold higher lung tissue concentration of 1-NTP following molar normalized IV dosing of 1 compared to that of 4. A once daily 10 mg/kg IV administration of 1 in an African Green monkey RSV model demonstrated a >2-log10 reduction in the peak lung viral load. These early data following the discovery of 1 supported its potential as a novel treatment for RSV prior to its development for Ebola and approval for COVID-19 treatment.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/pharmacology , Prodrugs/pharmacology , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus, Human/drug effects , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Animals , Antiviral Agents/chemistry , Antiviral Agents/pharmacokinetics , Caco-2 Cells , Cells, Cultured , Chlorocebus aethiops , Disease Models, Animal , Dogs , Drug Evaluation, Preclinical/methods , Epithelial Cells/virology , Humans , Macaca fascicularis , Male , Prodrugs/chemistry , Prodrugs/pharmacokinetics , Rats, Sprague-Dawley , Respiratory Syncytial Virus Infections/virology , Structure-Activity Relationship , Tissue Distribution , Tubercidin/analogs & derivatives , Tubercidin/chemistry , Viral Load
18.
Drug Metab Dispos ; 48(11): 1199-1209, 2020 11.
Article in English | MEDLINE | ID: mdl-32892154

ABSTRACT

The eastern woodchuck (Marmota monax) is a hibernating species extensively used as an in vivo efficacy model for chronic human hepatitis B virus infection. Under laboratory conditions, woodchucks develop a pseudohibernation condition; thus, the pharmacokinetics (PK) of small-molecule therapeutics may be affected by the seasonal change. The seasonal PK of four probe compounds were characterized over 12 months in seven male and nine female laboratory-maintained woodchucks. These compounds were selected to study changes in oxidative metabolism [antipyrine (AP)], glucuronidation [raltegravir (RTG)], renal clearance [lamivudine (3TC)], and hepatic function [indocyanine green (ICG)]. Seasonal changes in physiologic parameters and PK were determined. Seasonal body weight increases were ≥30%. Seasonal changes in body temperature and heart rate were <10%. The mean AP exposure remained unchanged from April to August 2017, followed by a significant increase (≥1.0-fold) from August to December and subsequent decrease to baseline at the end of study. A similar trend was observed in RTG and 3TC exposures. The ICG exposure remained unchanged. No significant sex difference in PK was observed, although female woodchucks appeared to be less susceptible to seasonal PK and body weight changes. Significant seasonal PK changes for AP, RTG, and 3TC indicate decreases in oxidative metabolism, phase II glucuronidation, and renal clearance during pseudohibernation. The lack of seasonal change in ICG exposure suggests there are no significant changes in hepatic function. This information can be used to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK. SIGNIFICANCE STATEMENT: Woodchuck is a hibernating species and is commonly used as a nonclinical model of hepatitis B infection. Investigation of seasonal PK changes is perhaps of greater interest to pharmaceutical industry scientists, who use the woodchuck model to optimize the scheduling of woodchuck studies to avoid seasonally driven variation in drug PK and/or toxicity. This information is also valuable to drug metabolism and veterinary scientists in understanding woodchuck's seasonal metabolism and behavior under the pseudohibernation condition.


Subject(s)
Antiviral Agents/pharmacokinetics , Hepatitis B, Chronic/drug therapy , Hibernation/physiology , Marmota/physiology , Metabolic Clearance Rate/physiology , Animals , Antiviral Agents/therapeutic use , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Female , Humans , Male , Seasons
19.
Drug Metab Dispos ; 47(12): 1433-1442, 2019 12.
Article in English | MEDLINE | ID: mdl-31582395

ABSTRACT

Induction potentials of the pregnane X receptor (PXR) activator rifampin (RIF) on transporter genes [e.g., organic anion-transporting polypeptides (OATPs)] are still in its infancy or remain controversial in the field. The present investigations characterized changes in transporter gene expression by RIF in sandwich-cultured hepatocytes from multiple donors of human and cynomolgus monkey using real-time quantitative reverse transcription polymerase chain reaction method. Three-day treatment of RIF significantly induced CYP3A4 (∼60-fold induction), but not CYP1A2 and CYP2D6 genes. SLC51B was the most highly induced uptake transporter gene (>10-fold) in both human and monkey hepatocytes. A greater induction of CYP2C9 was observed in monkey hepatocytes than that in humans. ATP-binding cassette (ABC)B1 and ABCC2 were induced slightly above 2-fold in human and monkey hepatocytes and appeared to be dose-dependent. The induction of OATP and other transporter genes was generally less than 2-fold and considered not clinically relevant. SLCO2B1 was not detectable in monkey hepatocytes. To investigate in vivo OATP induction, RIF (18 mg/kg per day) was orally dosed to cynomolgus monkeys for 7 days. Pitavastatin and antipyrine were intravenously dosed before and after RIF treatment as exogenous probes of OATP and CYP activities, respectively. Plasma coproporphyrin-I (CP-I) and coproporphyrin-III (CP-III) were measured as OATP endogenous biomarkers. Although a significant increase of antipyrine clearance (CL) was observed after RIF treatment, the plasma exposures of pitavastatin, CP-I, and CP-III remained unchanged, suggesting that OATP function was not significantly altered. The results suggested that OATP transporters were not significantly induced by PXR ligand RIF. The data are consistent with current regulatory guidances that the in vitro characterization of transporter induction during drug development is not required. SIGNIFICANCE STATEMENT: Organic anion-transporting polypeptide (OATP) genes were not induced by rifampin in sandwich-cultured human and monkey hepatocytes OATP functions measured by OATP probe pitavastatin and endogenous marker coproporphyrins were not altered in monkeys in vivo by 7-day rifampin treatment. The data suggested that OATP transporters are unlikely induced by the pregnane X receptor ligand rifampin, which are consistent with current regulatory guidances that the in vitro characterization of OATP1B induction during drug development is not required.


Subject(s)
Gene Expression/drug effects , Hepatocytes/drug effects , Organic Anion Transporters/genetics , Pregnane X Receptor/agonists , Rifampin/pharmacology , Animals , Antipyrine/blood , Antipyrine/pharmacokinetics , Area Under Curve , Cells, Cultured , Hepatocytes/metabolism , Humans , Macaca fascicularis , Male , Multidrug Resistance-Associated Protein 2 , Quinolines/blood , Quinolines/pharmacokinetics , Rifampin/blood , Species Specificity
20.
J Clin Pharmacol ; 58(6): 717-726, 2018 06.
Article in English | MEDLINE | ID: mdl-29534286

ABSTRACT

Etelcalcetide, a d-amino acid peptide, is an intravenous calcimimetic approved for the treatment of secondary hyperparathyroidism. Etelcalcetide binds the calcium-sensing receptor and increases its sensitivity to extracellular calcium, thereby decreasing secretion of parathyroid hormone (PTH) by chief cells. Etelcalcetide and its low-molecular-weight transformation products are rapidly cleared by renal excretion in healthy subjects, but clearance is substantially reduced and dependent on hemodialysis in end-stage renal disease. The effective half-life is 3-5 days in patients undergoing hemodialysis 3 times a week. A clinical study using a single microtracer intravenous dose of [14 C]etelcalcetide indicated that 60% of the administered dose was eliminated in dialysate. Etelcalcetide undergoes reversible disulfide exchange with serum albumin to form a serum albumin peptide conjugate that is too large (67 kDa) to be dialyzed, until a subsequent exchange forms etelcalcetide or a low-molecular-weight transformation product. This exchange from albumin is apparent after hemodialysis, when it partially restores etelcalcetide concentrations in plasma. Etelcalcetide has no known risks for drug-drug interactions. In phase 3 studies, 74%-75% of hemodialysis patients with secondary hyperparathyroidism who received etelcalcetide achieved a >30% PTH reduction from baseline versus 8%-10% of patients who received placebo. The pharmacokinetics and pharmacodynamics of etelcalcetide in hemodialysis patients supports a 5-mg starting dose administered after hemodialysis and uptitration in 2.5- or 5-mg increments every 4 weeks to a maximum dose of 15 mg 3 times a week.


Subject(s)
Hyperparathyroidism, Secondary/drug therapy , Hyperparathyroidism, Secondary/metabolism , Peptides/pharmacology , Peptides/pharmacokinetics , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/therapy , Administration, Intravenous , Calcimimetic Agents/pharmacokinetics , Calcimimetic Agents/pharmacology , Drug Interactions , Humans , Renal Dialysis , Renal Elimination/drug effects , Renal Insufficiency, Chronic/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...