Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
1.
Front Microbiol ; 15: 1385433, 2024.
Article in English | MEDLINE | ID: mdl-38770022

ABSTRACT

Edible grasshopper, Ruspolia ruspolia, has nutritional and cherished cultural and economic importance to people from diverse cultures, particularly in over 20 African countries. It is consumed at home or commercially traded as sautéed, deep-fried, or boiled products. However, there is limited information on the hygiene practices of the vendors and the implications on the microbial safety of the final product. This research aimed at assessing the food safety knowledge, handling practices and shelf life of edible long-horned grasshopper products among vendors and the microbial safety of ready-to-eat products sold in 12 different markets in Uganda. Samples of raw, deep-fried and boiled grasshoppers were randomly collected from 74 vendors (62% street and 38% market vendors) and subjected to microbial analysis. Over 85% of the vendors surveyed had no public health food handler's certificate and >95% had limited post-harvest handling knowledge. Total aerobic bacteria (7.30-10.49 Log10 cfu/g), Enterobacteriaceae (5.53-8.56 Log10 cfu/g), yeasts and molds (4.96-6.01 Log10 cfu/g) total counts were significantly high and above the acceptable Codex Alimentarius Commission and Food Safety Authority of Ireland (FSAI) limits for ready-to-eat food products. Eight key pathogenic bacteria responsible for foodborne diseases were detected and these isolates were characterized as Bacillus cereus, Hafnia alvei, Serratia marcescens, Staphylococcus aureus, S. xylosus, S. scuiri, S. haemolyticus, and Pseudomonas aeruginosa. Findings from this study highlight the urgent need to create local and national food safety policies for the edible grasshopper "nsenene" subsector to regulate and guide street and market vending along the value chain, to prevent the transmission of foodborne diseases to consumers.

2.
Sci Rep ; 14(1): 9993, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38693201

ABSTRACT

Termites are widely distributed globally and serve as a valuable food source in many countries. However, information on the myriad nutritional benefits of processed termite products in African markets remain largely unexploited. This study evaluated the phytochemicals, fatty acids, amino acids, minerals, vitamins and proximate composition of the edible winged termites (Macrotermes spp.) from three major Counties of Kenya. A total of 9 flavonoids, 5 alkaloids, and 1 cytokinin were identified. The oil content varied from 33 to 46%, exhibiting significant levels of beneficial omega 3 fatty acids, such as methyl (9Z,12Z,15Z)-octadecatrienoate and methyl (5Z,8Z,11Z,14Z,17Z)-eicosapentaenoate, ranging from 82.7-95.1 to 6.3-8.1 µg/g, respectively, across the different regions. Four essential and cereal-limiting amino acids lysine (1.0-1.3 mg/g), methionine (0.08-0.1 mg/g), leucine (0.6-0.9 mg/g) and threonine (0.1-0.2 mg/g), were predominant. Moreover, termites had a rich profile of essential minerals, including iron (70.7-111.8 mg/100 g), zinc (4.4-16.2 mg/100 g) and calcium (33.1-53.0 mg/100 g), as well as vitamins A (2.4-6.4 mg/kg), C (0.6-1.9 mg/kg) and B12 (10.7-17.1 mg/kg). The crude protein (32.2-44.8%) and fat (41.2-49.1%) contents of termites from the various Counties was notably high. These findings demonstrated the promising nutrients potential of winged termites and advocate for their sustainable utilization in contemporary efficacious functional food applications to combat malnutrition.


Subject(s)
Amino Acids , Isoptera , Nutritive Value , Animals , Amino Acids/analysis , Minerals/analysis , Vitamins/analysis , Fatty Acids/analysis , Phytochemicals/analysis , Kenya , Africa , Humans
3.
J Econ Entomol ; 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430932

ABSTRACT

The utilization of yellow mealworm, Tenebrio molitor (Linnaeus, Coleoptera: Tenebrionidae), for food and feed is gaining interest globally. However, its production is hindered by expensive commercial diets. This study assessed mealworm growth performance, survival, bioconversion, and nutritional composition when fed on wheat bran (WB) with different inclusion levels (25%, 50%, 75%, and 100%) of Irish potato waste (PW). Results indicated that mealworms fed on diets with 25%-75% PW had increased body length and 1-2 times higher weight gain compared to sole WB and PW diets. The survival rate was 93%-94% across all diets. Mealworms fed on WB had a feed conversion ratio of 3.26, while the efficiency of diet conversion increased with PW inclusion levels. Mealworms fed on diets with 75% PW inclusion had the highest crude fat (48%) and energy levels (598 kcal/100 g), while sole WB produced mealworms with the highest crude protein (55%). The acid detergent fiber achieved using 100% WB was 2- to 3-fold higher, but the crude fiber and neutral detergent fiber did not vary significantly. Considerable amounts of lysine (1.6-2 mg/100 g), methionine (0.5-0.7 mg/100 g), leucine (1.4-2 mg/100 g), and threonine (0.8-1 mg/100 g) were achieved in the mealworm larvae. Our findings revealed that cheap agricultural by-products could be successfully used for the mass production of mealworms, substantially contributing to reduced production costs. Further exploration of the nutrient-dense mealworm larvae for the development of novel food and feed products is crucial.

4.
Front Plant Sci ; 15: 1343038, 2024.
Article in English | MEDLINE | ID: mdl-38463573

ABSTRACT

Potato production faces major challenges from inadequate soil fertility, and nematode infestation, yet synthetic fertilizers and nematicides are costly and harmful to the environment. This study explored the potential of chitin-fortified black soldier fly-composted organic fertilizer (BSFCOF) as a multipurpose organic fertilizer amendment for enhancing potato yield and suppressing potato cyst nematodes (PCN). The BSFCOF was applied at a rate equivalent to 150 kg N ha-1 and fortified with chitin from black soldier fly pupal exuviae at inclusion rates equivalent to 0.5, 1, 2, 3, 4 and 5% chitin. Data were collected on potato growth characteristics, PCN population densities, and soil chemical properties for two growing cycles. Results showed that chitin fortified BSFCOF significantly improved potato growth parameters, chlorophyll concentration, marketable tuber yield and number of marketable tubers. The marketable tuber yield achieved using chitin-fortified BSFCOF was 70 - 362%, and 69 - 238% higher than the values achieved using unfertilized soil during the first and second growing cycles, respectively. Soil amendment with chitin-fortified BSFCOF significantly reduced the number of cysts per 200 g soil-1, number of eggs and J2 per cyst-1, eggs g-1 soil and reproduction rate by 32 - 87%, 9 - 92%, 31- 98% and 31 - 98%, respectively. The PCN suppression increased with chitin inclusion rates. There were significantly higher values for soil pH, ammonium nitrogen, nitrate nitrogen, available phosphorus, calcium, magnesium, potassium, and cation exchange capacity in soil amended with BSFCOF compared to unamended soil. This study demonstrates that BSFCOF fortified with 5% chitin is an effective soil enhancer with multiple benefits, including improved soil fertility, potato performance, and effective management of potato cyst nematodes.

5.
BMC Microbiol ; 24(1): 92, 2024 Mar 18.
Article in English | MEDLINE | ID: mdl-38500045

ABSTRACT

BACKGROUND: The soil biota consists of a complex assembly of microbial communities and other organisms that vary significantly across farming systems, impacting soil health and plant productivity. Despite its importance, there has been limited exploration of how different cropping systems influence soil and plant root microbiomes. In this study, we investigated soil physicochemical properties, along with soil and maize-root microbiomes, in an agroecological cereal-legume companion cropping system known as push-pull technology (PPT). This system has been used in agriculture for over two decades for insect-pest management, soil health improvement, and weed control in sub-Saharan Africa. We compared the results with those obtained from maize-monoculture (Mono) cropping system. RESULTS: The PPT cropping system changed the composition and diversity of soil and maize-root microbial communities, and led to notable improvements in soil physicochemical characteristics compared to that of the Mono cropping system. Distinct bacterial and fungal genera played a crucial role in influencing the variation in microbial diversity within these cropping systems. The relative abundance of fungal genera Trichoderma, Mortierella, and Bionectria and bacterial genera Streptomyces, RB41, and Nitrospira were more enriched in PPT. These microbial communities are associated with essential ecosystem services such as plant protection, decomposition, carbon utilization, bioinsecticides production, nitrogen fixation, nematode suppression, phytohormone production, and bioremediation. Conversely, pathogenic associated bacterial genus including Bryobacter were more enriched in Mono-root. Additionally, the Mono system exhibited a high relative abundance of fungal genera such as Gibberella, Neocosmospora, and Aspergillus, which are linked to plant diseases and food contamination. Significant differences were observed in the relative abundance of the inferred metabiome functional protein pathways including syringate degradation, L-methionine biosynthesis I, and inosine 5'-phosphate degradation. CONCLUSION: Push-pull cropping system positively influences soil and maize-root microbiomes and enhances soil physicochemical properties. This highlights its potential for agricultural and environmental sustainability. These findings contribute to our understanding of the diverse ecosystem services offered by this cropping system where it is practiced regarding the system's resilience and functional redundancy. Future research should focus on whether PPT affects the soil and maize-root microbial communities through the release of plant metabolites from the intercrop root exudates or through the alteration of the soil's nutritional status, which affects microbial enzymatic activities.


Subject(s)
Microbiota , Resilience, Psychological , Soil/chemistry , Zea mays , Fungi/genetics , Agriculture/methods , Bacteria/genetics , Soil Microbiology
6.
Front Plant Sci ; 15: 1361739, 2024.
Article in English | MEDLINE | ID: mdl-38504884

ABSTRACT

Root-knot nematodes (Meloidogyne spp.) are serious pests of most food crops, causing up to 100% yield loss. Nevertheless, commercial nematicides are costly and harmful to the environment. While the nematicidal potential of crustacean and synthetic chitin has been demonstrated globally, research on the potential of insect-derived chitin for nematode control has received limited attention. Here, seven chitin-fortified black soldier fly frass fertilizer extracts (chFE) were assessed for their suppressiveness of Meloidogyne incognita and impacts on spinach growth in comparison with a commercial nematicide using in vitro and in vivo bioassays. The performance of chFE and control treatments was assessed by determining their effects on nematode egg hatchability; infective juvenile (J2) mortality and paralysis; number of galls, egg masses, and J2s per plant; and spinach root and shoot biomass. In vitro results showed that chFE and commercial nematicide suppressed nematode egg hatchability by 42% and 52%, respectively, relative to the control (sterile distilled water). Up to 100% paralysis was achieved when M. incognita J2s were exposed to either chFE or commercial nematicide. Further, the J2 mortality achieved using chFE (95%) was comparable to the value achieved using commercial nematicide (96%); in all treatments, mortality increased with exposure time. Similarly, up to 85% suppression of gall development was achieved when spinach plants were grown in soil drenched with chFE; up to 79% reduction in egg mass formation and 68% suppression of J2 development in the root system were achieved using chFE. Also, chFE application significantly increased spinach root and shoot biomass by 54%-74% and 39%-58%, respectively, compared to commercial nematicide. Our findings demonstrate the nematicidal potential of chFE and its benefits on crop production. Thus, chFE could be considered as a promising multipurpose, regenerative, and cost-effective input for sustainable management of plant-parasitic nematodes and enhancement of crop yield.

7.
Sci Rep ; 14(1): 5045, 2024 02 29.
Article in English | MEDLINE | ID: mdl-38424443

ABSTRACT

The future of the food system on the planet is increasingly facing uncertainties that are attributable to population growth and a surge in demand for nutritious food. Traditional agricultural practices are poised to place strain on production, as well as natural resources and ecosystem services provided, particularly under a changing climate. Given their remarkable attributes, including a low environmental footprint, high food conversion ratio, rapid growth and nutritional values, edible insects can play a vital role in the global food system. Nonetheless, substantial knowledge gaps persist regarding their diversity, global distribution, and shared characteristics across regions, potentially impeding effective scaling and access to edible insects. Therefore, we compiled and analysed the fragmented database on edible insects and identified potential drivers that elucidate insect consumption, globally, focusing on promoting a sustainable food system. We collated data from various sources, including the literature for a list of edible insect species, the Global Biodiversity Information Facility and iNaturalist for the geographical presence of edible insects, the Copernicus Land Service library for Global Land Cover, and FAOSTAT for population, income, and nutritional security parameters. Subsequently, we performed a series of analytics at the country, regional and continental levels. Our study identifies 2205 insect species, consumed across 128 countries globally. Among continents, Asia has the highest number of edible insects (932 species), followed by North America (mainly Mexico) and Africa. The countries with the highest consumption of insects are Mexico (450 species), Thailand (272 species), India (262 species), DRC (255 species), China (235 species), Brazil (140 species), Japan (123 species), and Cameroon (100 species). Our study also revealed some common and specific practices related to edible insect access and utilisation among countries and regions. Although insect consumption is often rooted in cultural practices, it exhibits correlations with land cover, the geographical presence of potentially edible insects, the size of a country's population, and income levels. The practice of eating insects is linked to the culture of people in Africa, Asia, and Latin America, while increased consciousness and the need for food sustainability are driving most of the European countries to evaluate eating insects. Therefore, edible insects are becoming an increasingly significant part of the future of planetary food systems. Therefore, more proactive efforts are required to promote them for their effective contribution to achieving sustainable food production.


Subject(s)
Edible Insects , Animals , Humans , Ecosystem , Insecta , Allergens , Cameroon , Thailand
8.
Sci Rep ; 14(1): 3848, 2024 02 15.
Article in English | MEDLINE | ID: mdl-38360933

ABSTRACT

In the Americas, the fall armyworm (Spodoptera frugiperda) exists in two genetically distinct strains, the corn (C) and rice (R) strains. Despite their names, these strains are not associated with host plant preferences but have been shown to vary in pheromone composition and male responses. Recently, S. frugiperda was detected in Africa as an invasive species, but knowledge about variation in strain types, pheromone composition and inter-strain mating of populations of the pest in the continent has not been fully examined. Therefore, this study aimed to investigate variations, if any in the pheromone composition of female moths, male moth responses, and mating between C and R mitotypes of S. frugiperda populations in Kenya, as well as their geographic distribution. Strains (mitotypes) of S. frugiperda were identified using mitochondrial DNA (mtDNA) markers, and their pheromonal composition determined by coupled gas chromatography-mass spectrometric (GC-MS) analysis. Male moth responses to these compounds were evaluated using GC-electroantennographic detection (EAD), electroantennogram (EAG), and wind tunnel assays. Oviposition assays were used to determine whether R and C mitotype moths could mate and produce eggs. The results showed that both the R and C mitotypes were present, and there were no statistically significant differences in their distribution across all sampled locations. Five pheromone compounds including (Z)-7-dodecenyl acetate (Z7-12:OAc), (Z)-7-tetradecenyl acetate (Z7-14:OAc), (Z)-9-tetradecenyl acetate (Z9-14:OAc), (Z)-11-tetradecenyl acetate (Z11-14:OAc) and (Z)-11-hexadecenyl acetate (Z11-16:OAc), were detected in the pheromone glands of female moths of both mitotypes, with Z9-14:OAc being the most abundant. The relative percentage composition of Z9-14:OAc was similar in both mitotypes. However, the R mitotype had a 2.7 times higher relative percentage composition of Z7-12:OAc compared to the C mitotype moth, while the C mitotype moth had a 2.4 times higher relative percentage composition of Z11-16:OAc than the R mitotype moth. Male moths of both mitotypes exhibited similar responses to the pheromone compounds, showing the strongest responses to Z9-14:OAc and Z7-12:OAc in electrophysiological and behavioural assays. There was mating between R and C mitotypes with egg production comparable to mating within the same mitotype. Our results revealed that differences between the two S. frugiperda mitotypes are characterized by female moth pheromone composition rather than male moth responses to the pheromones, and that this does not prevent hybridisation between the mitotypes, which may have implications for their management.


Subject(s)
Moths , Sex Attractants , Animals , Female , Spodoptera/genetics , Sex Attractants/chemistry , Pheromones , Moths/genetics , Moths/chemistry , Kenya
9.
Article in English | MEDLINE | ID: mdl-38330807

ABSTRACT

The false codling moth (FCM), Thaumatotibia leucotreta, is a major quarantine pest native to Africa. Physical postharvest phytosanitary measures such as cold and heat treatments are championed to control its spread to new regions. However, the molecular changes that T. leucotreta undergoes as it attempts to adjust to its surroundings during the treatments and withstand the extreme temperatures remain largely unknown. The current study employs RNA-seq using the next-generation Illumina HiSeq platform to produce transcriptome profiles for differential gene expression analysis of T. leucotreta larvae under thermal stress. The transcriptome assembly analysis revealed 226,067 transcripts, clustering into 127,018 unigenes. In comparison to the 25 °C treated group, 874, 91, 159, and 754 individual differentially expressed genes (DEGs) co-regulated at -10, 0, 40, and 50 °C, respectively were discovered. Annotation of the DEGs by gene ontology (GO) revealed several genes, previously implicated in low and high-temperature stresses, including heat shock proteins, cytochrome P450, cuticle proteins, odorant binding proteins, and immune system genes. Kyoto Encyclopedia of Genes and Genomics (KEGG) classification analysis revealed that substantive DEGs were those involved in metabolic pathways such as thiamine, purine, folate, and glycerolipid metabolism pathways. The RT-qPCR validation of several significantly up- and down-regulated DEGs showed congruence between RNA-seq and qPCR data. This baseline study lays a foundation for future research into the molecular mechanisms underlying T. leucotreta's cold/heat tolerance by providing a thorough differential gene expression analysis that has identified multiple genes that may be associated with the insect's ability to withstand cold and heat.

10.
ACS Omega ; 9(7): 8478-8489, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405442

ABSTRACT

Globally, antibiotics are facing fierce resistance from multidrug-resistant bacterial strains. There is an urgent need for eco-friendly alternatives. Though insects are important targets for antimicrobial peptides, it has received limited research attention. This study investigated the impact of waste substrates on the production of antibacterial agents in black soldier fly (Hermetia illucens L.) larvae (HIL) and their implications in the suppression of pathogens [Bacillus subtilis (ATCC 6051), Staphylococcus aureus (ATCC 25923), Pseudomonas aeruginosa (ATCC 27853), and Escherichia coli (ATCC 25922)]. The 20% acetic acid (AcOH) extract from market waste had the highest antibacterial activity with an inhibition zone of 17.00 mm, followed by potato waste (15.02 mm) against S. aureus. Hexane extract from HIL raised on market waste also showed a significant inhibitory zone (13.06 mm) against B. subtilis. .Minimum inhibitory concentration (MIC) values recorded were 25 mg/mL against all test pathogens. The fastest time-kill of 20% AcOH extract was 4 h againstB. subtilis, E. coli, ,andP. aeruginosa. Lauric acid was also identified as the dominant component of the various hexane extracts with concentrations of 602.76 and 318.17 µg/g in HIL reared on potato and market waste, respectively. Energy from the market waste substrate correlated significantly (r = 0.97) with antibacterial activities. This study highlights the key role of substrate quality and extraction methods for enhancing the production of antibacterial agents in HIL, thus providing new insights into the development of potential drugs to overcome the alarming concerns of antimicrobial resistance.

11.
Life (Basel) ; 14(2)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38398690

ABSTRACT

Before the invasion of the fall armyworm (FAW) Spodoptera frugiperda into Africa, smallholder farmers had been using indigenous practices such as applying fish soup to plants to manage stemborer pests. Although farmers have since begun adapting this practice against FAW, no attempt has been made to scientifically evaluate this practice. Therefore, we assessed the efficacy of applying fish soup to maize plants that were artificially infested with FAW under semi-field conditions. Our results showed that foliar damage is inversely correlated with the concentration of a fish soup and sugar solution, with the highest (100%) concentration resulting in the lowest foliar damage and the highest plant recovery. The FAW foliar damage results for maize plants treated with 100%, 50%, 10% fish soup and sugar, and distilled water were 46.3 ± 5.6, 51.1 ± 5.0, 71.6 ± 5.2, and 99.4 ± 0.4%, respectively, whereas plant recovery results from the same treatments were 35.2 ± 3.7, 31.1 ± 5.4, 20.0 ± 4.6, and 0.0 ± 0.0%, respectively. A concentration of fish soup and sugar solution of at least 25.9% was required to achieve the lowest foliar damage of 17.8% and peak plant recovery of 73.6%. Fish soup and sugar solutions attracted a wide range of insects, including potential natural enemies (predators and parasitoids) of FAW, in a dose-dependent manner. Maize plants treated with fish soup and sugar showed higher chlorophyll content and better growth than the control did. Proximate and chemical analysis showed that fish soup contains essential plant growth nutrients (e.g., nitrogen, phosphorus, and calcium). Through GC-MS analyses, we identified 76 volatile organic compounds in fish soup, of which 16 have been reported as insect attractants, highlighting their potential ecological significance. Therefore, the indigenous pest management practices for FAW, such as the use of fish soup, deserve particular attention. These practices could contribute to food security and improve the livelihoods of vulnerable communities. Further field validation studies, economic analyses, product development, and optimisation are therefore required to optimise the use of fish soup based on fish waste.

12.
J Econ Entomol ; 117(1): 58-72, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38156672

ABSTRACT

Rising feed cost challenges due to expensive conventional protein sources continue to make headlines in Africa causing drops in profit margins. We assessed the impact of insect (Hermetia illucens Linnaeus larvae meal, HILM) protein as a substitute for soybean meal and sunflower seed cake on layer chicken performance and profitability. Our results showed that apart from the growers, chicks (12.37 g/bird) and layer hens (2.02 g/bird) fed diets with 75% HILM inclusion levels had significantly higher average daily weight gain. The average daily feed intake (ADFI) and feed conversion ratio (FCR) varied significantly when the chicks and layer hens were provided with the HILM-based diets. For the chicks and layer hens, the lowest ADFI and FCR were observed in birds subjected to diets with 75% and 100% HILM compared to the growers fed diets with 50% HILM. Significantly higher egg production was observed for layer hens fed diets containing 75% of HILM throughout the first (87.41%) and second (83.05%) phase production cycles. Layer hens fed HILM-based diets had a 3-10% increase in egg laying percentage. There was higher profit margins when birds were fed diets containing 75% of HILM (~1.83 and 5.98 US$ per bird), which mirrored the return on investment estimated at 63.95% and 33.36% for the pullets (growers) and laying hen, respectively. Our findings demonstrate that diets with 75% HILM provided optimum growth performance, reduced feeding costs, increased weight gain and egg production as well as improved economic returns for commercial on-farm poultry production systems.


Subject(s)
Chickens , Diptera , Animals , Female , Larva , Animal Feed/analysis , Diet/veterinary , Weight Gain , Animal Nutritional Physiological Phenomena
13.
R Soc Open Sci ; 10(12): 230241, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38094264

ABSTRACT

Research on stingless bee products has increased in recent years, and of particular interest is propolis because of its biological activities such as antioxidant and antimicrobial. However, there is paucity of information regarding intra-hive variations in the biochemical composition and biofunctional properties of this propolis. In this study, we investigated the phytochemicals and radical scavenging activity (RSA) of Meliponula ferruginea propolis from 10 wooden hives (n = 49). The samples were collected from five different locations comprising the entrance, involucrum, pillars, pots and sealant. Principal component analysis showed that there is an intra-hive variation in phytochemical content and RSA. Phenolic content constituted the highest phytochemical content in all the locations. The sealant and entrance had the highest amounts of phytochemicals compared to the involucrum, pillars and pots. Further analysis of propolis extracts by gas chromatography-mass spectrometry revealed occurrence of different compounds such as monoterpenoids, hydrocarbons, triterpenoids and alkaloids. Hydrocarbons were common in all parts while monoterpenes and triterpenes were present in the entrance. The findings of our study indicates that there is an intra-hive variation in propolis of M. ferruginea and hence this information will provide further insight into better understanding of stingless bee propolis.

14.
Sci Rep ; 13(1): 18975, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37923765

ABSTRACT

Cabbage and Onion production in sub-Saharan Africa face numerous pest constraints that needs to be overcome to feed the rapidly growing population. This study aimed to establish the occurrence, incidence, and severity of soil-dwelling pests of cabbage and onions, and current management practices in five Counties of Kenya. Our findings revealed that most farmers grew hybrid vegetables on a small scale, which were highly dominated by various pest species (Delia platura, Maladera sp., and Agriotes sp. for cabbage and Atherigona orientalis and Urophorus humeralis for onion. The occurrence, incidence and severity of the various pest species on both crops varied considerably. Over 95% of the farmers relied on synthetic insecticides, which were applied weekly or bimonthly with limited success. Our findings demonstrate that invasive and polyphagous A. orientalis and D. platura were the most devastating pests of onion and cabbage without effective control options. Therefore, effective, sustainable, and affordable management strategies are required to control the spread of these pests to other crops in the region.


Subject(s)
Brassica , Onions , Insect Control , Soil , Kenya , Crops, Agricultural
15.
Front Physiol ; 14: 1253305, 2023.
Article in English | MEDLINE | ID: mdl-37900958

ABSTRACT

The fall armyworm (FAW) Spodoptera frugiperda, is a voracious pest of cereals native to the Americas and which invaded Africa in 2016. Chemical control is the main management option, which however remains ineffective and unsustainable. Fungal endophytes are increasingly used as alternative for the management of insect pests of economic importance. This study assessed the potential of eight endophytic fungal isolates to colonize maize plant and their ability to promote seedlings growth through seed and foliar inoculations, as well as their suppressive effects on FAW. Fungal colonization rates of different plant parts by the endophytes varied as per the inoculation methods. Beauveria bassiana ICIPE 279 colonized more than 60% of all the seedling parts while B. bassiana G1LU3 only colonized stem (25%) and leaf (5%) tissues through foliar inoculation. Trichoderma atroviride F2S21, T. asperellum M2RT4, T. harzianum F2R41, Trichoderma sp. F2L41, Hypocrea lixii F3ST1 and Fusarium proliferatum F2S51 successfully colonized all the plant parts and therefore were selected and further evaluated through seed inoculation for their endophytic persistence, effect on plant growth, and pathogenicity to Spodoptera frugiperda immature and adult stages. Weekly assessment showed varied effect of the endophytes on maize plant growth parameters compared to the control. During the first week, percentage colonization of the plant parts ranges between 90%-100%, 65%-100%, and 60%-100%, in the roots, stems, and leaves, respectively for all the five tested isolates. However, the colonization pattern/rates significantly decreased over time for H. lixii F3ST1 in the stems and leaves, and for T. harzianum F2R41 in the leaves and for T. asperellum M2RT4 in the roots. In addition, T. harzianum F2R41 outperformed all the other isolates in boosting the plant height, whereas H. lixii F3ST1 and T. asperellum M2RT4 outperformed all the other isolates in increasing the wet and dry shoots weight. Furthermore, the number of egg masses laid on endophytically-colonized maize plants varied among the treatments. Trichoderma asperellum M2RT4 and H. lixii F3ST1 endophytically-colonized maize plants significantly reduced the number of egg masses and the defoliation/feeding rates of the pest compared to the control. Additionally, T. harzianum F2R41 had the highest negative impact on the pupation and adult emergence of S. frugiperda with a female-biased sex ratio. Our findings indicate that T. asperellum M2RT4, T. harzianum F2R41, and H. lixii F3ST1 hold a potential to be developed as endophytic-fungal-based biopesticides for sustainable management of S. frugiperda and as plant growth promoters.

16.
Heliyon ; 9(10): e20506, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37810857

ABSTRACT

Wheat bread is among stable foods that are nutritionally imbalanced, thus enrichment is crucial. We evaluated the nutritional impact of high-valued wheat bread enriched with varying levels of meat powder from hen fed diet with insect (Hermetia illucens)-based meal. Crude protein and ash in bread increased with increasing inclusion of meat powder. Limiting amino acids like lysine and threonine in enriched bread products increased by 3.0-4.5 and 1.8-3.1-folds, respectively. Omega 3 fatty acids were significantly enhanced in bread fortified with meat powder. Vitamins (retinol, nicotinic acid, and pantothenic acid) were significantly increased in supplemented bread products. Iron, zinc, and calcium increased by 1.1, 1.2 and 3.0-folds in enriched bread with 30% meat powder. Colour, flavour and overall acceptability of breads prepared with 25 and 30% meat powder were highly ranked. Our findings demonstrate that meat powder (i.e., from hen fed insect-based diets) enrichment would provide added health and nutritional benefits to bread products without having adverse effects on any functional or sensory properties. Thus, this could be a novel strategy and trend for improving bread products, that might generate increasing demand for a healthier consumer-oriented lifestyle.

17.
Pest Manag Sci ; 79(12): 5312-5320, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605965

ABSTRACT

BACKGROUND: Maize production in Africa is hindered by a myriad of biotic challenges, key among them being invasive and native lepidopteran stemborers. Recent invasion of the continent by fall armyworm, Spodoptera frugiperda, has further exacerbated the situation. Fortunately, Cotesia icipe was found to be very promising against S. frugiperda. However, the co-occurrence and interaction between S. frugiperda and the stemborers (Busseola fusca, Sesamia calamistis, and Chilo partellus) in maize agroecosystem may jeopardize the efficiency of C. icipe as a biocontrol agent of S. frugiperda. This study investigated the performance of C. icipe on S. frugiperda, Spodoptera littoralis and the stemborers. Specifically, the preference and acceptability of C. icipe to the host insects, the physiological suitability of the hosts for its development, and the effect of these hosts on the fitness parameters of the offspring were assessed. RESULTS: Cotesia icipe accepted all the tested hosts, albeit with higher preference for Spodoptera species than for stemborers under multiple-choice tests. Also, the highest parasitism of up to 97% was recorded on S. frugiperda compared with parasitism on the stemborers of 43% in B. fusca. Moreover, physiological suitability and fitness traits (except for per cent female offspring) varied with host species, again being optimal on Spodoptera species. CONCLUSION: Cotesia icipe demonstrated strong potential to control S. frugiperda in maize due to its high affinity for parasitization and developmental success in this host; and despite its non-specific parasitization, the presence of other hosts may not prevent its maximum control of S. frugiperda. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Hymenoptera , Moths , Female , Animals , Hymenoptera/physiology , Spodoptera , Introduced Species , Zea mays , Larva
18.
Heliyon ; 9(6): e16144, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37265631

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda J.E. Smith, has caused massive maize losses since its attack on the African continent in 2016, particularly in east Africa. In this study, we predicted the spatial distribution (established habitat) of FAW in five east African countries viz., Kenya, Tanzania, Rwanda, Uganda, and Ethiopia. We used FAW occurrence observations for three years i.e., 2018, 2019, and 2020, the maximum entropy (MaxEnt) model, and bioclimatic, land surface temperature (LST), solar radiation, wind speed, elevation, and landscape structure data (i.e., land use and land cover and maize harvested area) as explanatory variables. The explanatory variables were used as inputs into a variable selection experiment to select the least correlated ones that were then used to predict FAW establishment, i.e., suitability areas (very low suitability - very high suitability). The shared socio-economic pathways, SSP2-4.5 and SSP5-8.5 for the years 2030 and 2050 were used to predict the effect of future climate scenarios on FAW establishment. The results demonstrated that FAW establishment areas in eastern Africa were based on the model strength and true performance (area under the curve: AUC = 0.87), but not randomly. Moreover, ∼27% of eastern Africa is currently at risk of FAW establishment. Predicted FAW risk areas are expected to increase to ∼29% (using each of the SSP2-4.5 and SSP5-8.5 scenarios) in the year 2030, and to ∼38% (using SSP2-4.5) and ∼35% (using SSP5-8.5) in the year 2050 climate scenarios. The LULC, particularly croplands and maize harvested area, together with temperature and precipitation bioclimatic variables provided the highest permutation importance in determining the occurrence and establishment of the pest in eastern Africa. Specifically, the study revealed that FAW was sensitive to isothermality (Bio3) rather than being sensitive to a single temperature value in the year. FAW preference ranges of temperature, precipitation, elevation, and maize harvested area were observed, implying the establishment of a once exotic pest in critical maize production regions in eastern Africa. It is recommended that future studies should thus embed the present study's modeling results into a dynamic platform that provides near-real-time predictions of FAW spatial occurrence and risk at the farm scale.

19.
Food Sci Nutr ; 11(6): 3558-3574, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37324836

ABSTRACT

Ruspolia differens Serville (Orthoptera: Tettigonidae) is a highly nutritious and luxurious insect delicacy that is consumed as a food source in many African countries. However, the nutrient profile of R. differens in different geographical regions have received limited research interest. Here, we provide comprehensive evidence of geographical impact on the nutrient profile of R. differens and its potential to meet the recommended dietary intake of the population. Our results demonstrated that proximate composition, fatty acids, amino acids, minerals, vitamins, and flavonoid contents of R. differens collected from five districts in Uganda varied considerably. The crude protein (28-45%), crude fat (41-54%), and energy (582-644 Kj/100 g) contents of R. differens exceed that reported from animal origins. The highest crude protein, crude fat, and carbohydrate contents of R. differens were recorded in Kabale, Masaka, and Kampala, respectively. A total of 37 fatty acids were identified with linoleic acid (omega-6 fatty acid) being the most abundant polyunsaturated fatty acid in R. differens from Kabale, Masaka, and Mbarara. All essential amino acids were recorded in R. differens, particularly histidine with values exceeding the daily requirement for adults. Mineral and vitamin content differed significantly across the five districts. The highest quantity of flavonoids was recorded in R. differens from Hoima (484 mg/100 g). Our findings revealed that R. differens could be considered as functional food ingredients capable of supplying essential macro- and micronutrients that are critical in curbing the rising food insecurity and malnutrition in the regions.

20.
Sci Rep ; 13(1): 7805, 2023 05 13.
Article in English | MEDLINE | ID: mdl-37179403

ABSTRACT

We examined the socio-cultural practices on the use of beetle grubs as food and feed in western Kenya by interviewing 211 randomly selected households and conducting seven focus group discussions in Bungoma, Kakamega, Busia, and Trans Nzoia counties. The grubs were used as food and feed in ~ 39% and 78% of the households, respectively. The perceived benefits of the grubs for human consumption were nutritiousness and no linkage to allergies. The grubs were perceived to enhance animal weight gain and increase poultry egg laying. They were also perceived to recycle nutrients from organic waste, and clean the environment. Toasting and roasting were the dominant methods of preparing the grubs. Lack of knowledge on the grub nutritional benefits and stigma were key deterrents to their consumption. About 66% of the respondents expressed willingness to farm the grubs if the market and rearing protocols are available. Almost 98% of the respondents lacked knowledge of the beetle biology, indicating limited capacity to conserve them. The practices on the use of beetle grubs as food and feed differed across counties and by gender, age, marital status and education level. Strategies for sustainable use of the grubs as food and feed have been proposed and new research directions highlighted.


Subject(s)
Coleoptera , Female , Animals , Humans , Kenya , Food , Farms , Nutrients
SELECTION OF CITATIONS
SEARCH DETAIL
...