Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters











Publication year range
1.
Cell Chem Biol ; 30(1): 97-109.e9, 2023 01 19.
Article in English | MEDLINE | ID: mdl-36626903

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting the degradation of hepatic LDL receptors (LDLRs). Current therapeutic approaches use antibodies that disrupt PCSK9 binding to LDLR to reduce circulating LDL-C concentrations or siRNA that reduces PCSK9 synthesis and thereby levels in circulation. Recent reports describe small molecules that, like therapeutic antibodies, interfere with PCSK9 binding to LDLR. We report an alternative approach to decrease circulating PCSK9 levels by accelerating PCSK9 clearance and degradation using heterobifunctional molecules that simultaneously bind to PCSK9 and the asialoglycoprotein receptor (ASGPR). Various formats, including bispecific antibodies, antibody-small molecule conjugates, and heterobifunctional small molecules, demonstrate binding in vitro and accelerated PCSK9 clearance in vivo. These molecules showcase a new approach to PCSK9 inhibition, targeted plasma protein degradation (TPPD), and demonstrate the feasibility of heterobifunctional small molecule ligands to accelerate the clearance and degradation of pathogenic proteins in circulation.


Subject(s)
Proprotein Convertase 9 , Serine Endopeptidases , Proprotein Convertase 9/metabolism , Asialoglycoprotein Receptor , Serine Endopeptidases/metabolism , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Cholesterol, LDL , Ligands
2.
Cell Chem Biol ; 29(2): 249-258.e5, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34547225

ABSTRACT

Proprotein convertase subtilisin/kexin type 9 (PCSK9) regulates plasma low-density lipoprotein cholesterol (LDL-C) levels by promoting hepatic LDL receptor (LDLR) degradation. Therapeutic antibodies that disrupt PCSK9-LDLR binding reduce LDL-C concentrations and cardiovascular disease risk. The epidermal growth factor precursor homology domain A (EGF-A) of the LDLR serves as a primary contact with PCSK9 via a flat interface, presenting a challenge for identifying small molecule PCSK9-LDLR disruptors. We employ an affinity-based screen of 1013in vitro-translated macrocyclic peptides to identify high-affinity PCSK9 ligands that utilize a unique, induced-fit pocket and partially disrupt the PCSK9-LDLR interaction. Structure-based design led to molecules with enhanced function and pharmacokinetic properties (e.g., 13PCSK9i). In mice, 13PCSK9i reduces plasma cholesterol levels and increases hepatic LDLR density in a dose-dependent manner. 13PCSK9i functions by a unique, allosteric mechanism and is the smallest molecule identified to date with in vivo PCSK9-LDLR disruptor function.


Subject(s)
Peptides/pharmacology , Proprotein Convertase 9/metabolism , Receptors, LDL/antagonists & inhibitors , Animals , Dose-Response Relationship, Drug , Hep G2 Cells , Humans , Ligands , Male , Mice , Mice, Inbred C57BL , Peptides/chemical synthesis , Peptides/chemistry , Protein Conformation , Receptors, LDL/metabolism
4.
Cancer Discov ; 8(9): 1176-1193, 2018 09.
Article in English | MEDLINE | ID: mdl-29991605

ABSTRACT

Mutations in estrogen receptor alpha (ERα) that confer resistance to existing classes of endocrine therapies are detected in up to 30% of patients who have relapsed during endocrine treatments. Because a significant proportion of therapy-resistant breast cancer metastases continue to be dependent on ERα signaling, there remains a critical need to develop the next generation of ERα antagonists that can overcome aberrant ERα activity. Through our drug-discovery efforts, we identified H3B-5942, which covalently inactivates both wild-type and mutant ERα by targeting Cys530 and enforcing a unique antagonist conformation. H3B-5942 belongs to a class of ERα antagonists referred to as selective estrogen receptor covalent antagonists (SERCA). In vitro comparisons of H3B-5942 with standard-of-care (SoC) and experimental agents confirmed increased antagonist activity across a panel of ERαWT and ERαMUT cell lines. In vivo, H3B-5942 demonstrated significant single-agent antitumor activity in xenograft models representing ERαWT and ERαY537S breast cancer that was superior to fulvestrant. Lastly, H3B-5942 potency can be further improved in combination with CDK4/6 or mTOR inhibitors in both ERαWT and ERαMUT cell lines and/or tumor models. In summary, H3B-5942 belongs to a class of orally available ERα covalent antagonists with an improved profile over SoCs.Significance: Nearly 30% of endocrine therapy-resistant breast cancer metastases harbor constitutively activating mutations in ERα. SERCA H3B-5942 engages C530 of both ERαWT and ERαMUT, promotes a unique antagonist conformation, and demonstrates improved in vitro and in vivo activity over SoC agents. Importantly, single-agent efficacy can be further enhanced by combining with CDK4/6 or mTOR inhibitors. Cancer Discov; 8(9); 1176-93. ©2018 AACR.This article is highlighted in the In This Issue feature, p. 1047.


Subject(s)
Breast Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor Antagonists/administration & dosage , Estrogen Receptor alpha/antagonists & inhibitors , Indazoles/administration & dosage , Mutation , Administration, Oral , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cysteine/antagonists & inhibitors , Drug Screening Assays, Antitumor , Drug Synergism , Estrogen Receptor Antagonists/chemistry , Estrogen Receptor Antagonists/pharmacology , Estrogen Receptor alpha/chemistry , Estrogen Receptor alpha/genetics , Female , Humans , Indazoles/chemistry , Indazoles/pharmacology , MCF-7 Cells , Mice , Protein Conformation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Xenograft Model Antitumor Assays
5.
Cancer Res ; 77(24): 6999-7013, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247039

ABSTRACT

Activation of the fibroblast growth factor receptor FGFR4 by FGF19 drives hepatocellular carcinoma (HCC), a disease with few, if any, effective treatment options. While a number of pan-FGFR inhibitors are being clinically evaluated, their application to FGF19-driven HCC may be limited by dose-limiting toxicities mediated by FGFR1-3 receptors. To evade the potential limitations of pan-FGFR inhibitors, we generated H3B-6527, a highly selective covalent FGFR4 inhibitor, through structure-guided drug design. Studies in a panel of 40 HCC cell lines and 30 HCC PDX models showed that FGF19 expression is a predictive biomarker for H3B-6527 response. Moreover, coadministration of the CDK4/6 inhibitor palbociclib in combination with H3B-6527 could effectively trigger tumor regression in a xenograft model of HCC. Overall, our results offer preclinical proof of concept for H3B-6527 as a candidate therapeutic agent for HCC cases that exhibit increased expression of FGF19. Cancer Res; 77(24); 6999-7013. ©2017 AACR.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Cell Transformation, Neoplastic/genetics , Fibroblast Growth Factors/genetics , Heterocyclic Compounds, 4 or More Rings/therapeutic use , Liver Neoplasms/drug therapy , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Cell Line, Tumor , Female , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Mice , Mice, Inbred BALB C , Mice, Nude , Xenograft Model Antitumor Assays
6.
Nat Commun ; 8(1): 103, 2017 07 24.
Article in English | MEDLINE | ID: mdl-28740126

ABSTRACT

Muscle-invasive bladder cancer (MIBC) is an aggressive disease with limited therapeutic options. Although immunotherapies are approved for MIBC, the majority of patients fail to respond, suggesting existence of complementary immune evasion mechanisms. Here, we report that the PPARγ/RXRα pathway constitutes a tumor-intrinsic mechanism underlying immune evasion in MIBC. Recurrent mutations in RXRα at serine 427 (S427F/Y), through conformational activation of the PPARγ/RXRα heterodimer, and focal amplification/overexpression of PPARγ converge to modulate PPARγ/RXRα-dependent transcription programs. Immune cell-infiltration is controlled by activated PPARγ/RXRα that inhibits expression/secretion of inflammatory cytokines. Clinical data sets and an in vivo tumor model indicate that PPARγHigh/RXRαS427F/Y impairs CD8+ T-cell infiltration and confers partial resistance to immunotherapies. Knockdown of PPARγ or RXRα and pharmacological inhibition of PPARγ significantly increase cytokine expression suggesting therapeutic approaches to reviving immunosurveillance and sensitivity to immunotherapies. Our study reveals a class of tumor cell-intrinsic "immuno-oncogenes" that modulate the immune microenvironment of cancer.Muscle-invasive bladder cancer (MIBC) is a potentially lethal disease. Here the authors characterize diverse genetic alterations in MIBC that convergently lead to constitutive activation of PPARgamma/RXRalpha and result in immunosurveillance escape by inhibiting CD8+ T-cell recruitment.


Subject(s)
Immune Evasion/immunology , Monitoring, Immunologic , PPAR gamma/immunology , Retinoid X Receptor alpha/immunology , Urinary Bladder Neoplasms/immunology , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Gene Expression Profiling/methods , HCT116 Cells , Humans , Immunoblotting , Immunotherapy/methods , Inflammation Mediators/immunology , Inflammation Mediators/metabolism , Mice , Microscopy, Fluorescence , Mutation/immunology , Neoplasm Invasiveness , PPAR gamma/chemistry , PPAR gamma/genetics , Protein Multimerization/immunology , Retinoid X Receptor alpha/chemistry , Retinoid X Receptor alpha/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/therapy
7.
Nat Commun ; 8: 15522, 2017 05 25.
Article in English | MEDLINE | ID: mdl-28541300

ABSTRACT

Pladienolide, herboxidiene and spliceostatin have been identified as splicing modulators that target SF3B1 in the SF3b subcomplex. Here we report that PHF5A, another component of this subcomplex, is also targeted by these compounds. Mutations in PHF5A-Y36, SF3B1-K1071, SF3B1-R1074 and SF3B1-V1078 confer resistance to these modulators, suggesting a common interaction site. RNA-seq analysis reveals that PHF5A-Y36C has minimal effect on basal splicing but inhibits the global action of splicing modulators. Moreover, PHF5A-Y36C alters splicing modulator-induced intron-retention/exon-skipping profile, which correlates with the differential GC content between adjacent introns and exons. We determine the crystal structure of human PHF5A demonstrating that Y36 is located on a highly conserved surface. Analysis of the cryo-EM spliceosome Bact complex shows that the resistance mutations cluster in a pocket surrounding the branch point adenosine, suggesting a competitive mode of action. Collectively, we propose that PHF5A-SF3B1 forms a central node for binding to these splicing modulators.


Subject(s)
Adenosine/chemistry , Alternative Splicing , Carrier Proteins/chemistry , Phosphoproteins/chemistry , RNA Splicing Factors/chemistry , Cell Proliferation , Cell Survival , Cryoelectron Microscopy , Crystallography, X-Ray , Epoxy Compounds/chemistry , Exons , Fatty Alcohols/chemistry , HCT116 Cells , Humans , Introns , Macrolides/chemistry , Mass Spectrometry , Mutagenesis, Site-Directed , Mutation , Myeloid Cell Leukemia Sequence 1 Protein/chemistry , Phosphoproteins/metabolism , Protein Binding , Protein Conformation , Pyrans/chemistry , RNA Interference , RNA Splicing Factors/metabolism , RNA-Binding Proteins , Recombinant Proteins/chemistry , Sequence Analysis, RNA , Spiro Compounds/chemistry , Spliceosomes/metabolism , Trans-Activators
8.
J Virol ; 81(21): 12049-60, 2007 Nov.
Article in English | MEDLINE | ID: mdl-17728234

ABSTRACT

This paper describes the structure determination of nsp3a, the N-terminal domain of the severe acute respiratory syndrome coronavirus (SARS-CoV) nonstructural protein 3. nsp3a exhibits a ubiquitin-like globular fold of residues 1 to 112 and a flexibly extended glutamic acid-rich domain of residues 113 to 183. In addition to the four beta-strands and two alpha-helices that are common to ubiquitin-like folds, the globular domain of nsp3a contains two short helices representing a feature that has not previously been observed in these proteins. Nuclear magnetic resonance chemical shift perturbations showed that these unique structural elements are involved in interactions with single-stranded RNA. Structural similarities with proteins involved in various cell-signaling pathways indicate possible roles of nsp3a in viral infection and persistence.


Subject(s)
Magnetic Resonance Spectroscopy/methods , RNA-Dependent RNA Polymerase/chemistry , Severe acute respiratory syndrome-related coronavirus/metabolism , Viral Nonstructural Proteins/chemistry , Amino Acid Sequence , Dose-Response Relationship, Drug , Mass Spectrometry , Models, Molecular , Molecular Conformation , Molecular Sequence Data , Protein Conformation , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Viral/chemistry , RNA-Dependent RNA Polymerase/metabolism , Sequence Homology, Amino Acid , Viral Nonstructural Proteins/metabolism , Viral Proteins/chemistry
9.
J Virol ; 81(12): 6700-8, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17409150

ABSTRACT

Mature nonstructural protein-15 (nsp15) from the severe acute respiratory syndrome coronavirus (SARS-CoV) contains a novel uridylate-specific Mn2+-dependent endoribonuclease (NendoU). Structure studies of the full-length form of the obligate hexameric enzyme from two CoVs, SARS-CoV and murine hepatitis virus, and its monomeric homologue, XendoU from Xenopus laevis, combined with mutagenesis studies have implicated several residues in enzymatic activity and the N-terminal domain as the major determinant of hexamerization. However, the tight link between hexamerization and enzyme activity in NendoUs has remained an enigma. Here, we report the structure of a trimmed, monomeric form of SARS-CoV nsp15 (residues 28 to 335) determined to a resolution of 2.9 A. The catalytic loop (residues 234 to 249) with its two reactive histidines (His 234 and His 249) is dramatically flipped by approximately 120 degrees into the active site cleft. Furthermore, the catalytic nucleophile Lys 289 points in a diametrically opposite direction, a consequence of an outward displacement of the supporting loop (residues 276 to 295). In the full-length hexameric forms, these two loops are packed against each other and are stabilized by intimate intersubunit interactions. Our results support the hypothesis that absence of an adjacent monomer due to deletion of the hexamerization domain is the most likely cause for disruption of the active site, offering a structural basis for why only the hexameric form of this enzyme is active.


Subject(s)
RNA-Dependent RNA Polymerase/chemistry , Severe acute respiratory syndrome-related coronavirus/enzymology , Viral Nonstructural Proteins/chemistry , Allosteric Site , Animals , Binding Sites , Catalytic Domain , Cloning, Molecular , Crystallography, X-Ray , Dimerization , Electrophoresis, Polyacrylamide Gel , Endoribonucleases , Manganese/chemistry , Molecular Conformation , Mutagenesis , Protein Conformation , Xenopus laevis
10.
J Virol ; 81(8): 3913-21, 2007 Apr.
Article in English | MEDLINE | ID: mdl-17229691

ABSTRACT

Conserved among all coronaviruses are four structural proteins: the matrix (M), small envelope (E), and spike (S) proteins that are embedded in the viral membrane and the nucleocapsid phosphoprotein (N), which exists in a ribonucleoprotein complex in the lumen. The N-terminal domain of coronaviral N proteins (N-NTD) provides a scaffold for RNA binding, while the C-terminal domain (N-CTD) mainly acts as oligomerization modules during assembly. The C terminus of the N protein anchors it to the viral membrane by associating with M protein. We characterized the structures of N-NTD from severe acute respiratory syndrome coronavirus (SARS-CoV) in two crystal forms, at 1.17 A (monoclinic) and at 1.85 A (cubic), respectively, resolved by molecular replacement using the homologous avian infectious bronchitis virus (IBV) structure. Flexible loops in the solution structure of SARS-CoV N-NTD are now shown to be well ordered around the beta-sheet core. The functionally important positively charged beta-hairpin protrudes out of the core, is oriented similarly to that in the IBV N-NTD, and is involved in crystal packing in the monoclinic form. In the cubic form, the monomers form trimeric units that stack in a helical array. Comparison of crystal packing of SARS-CoV and IBV N-NTDs suggests a common mode of RNA recognition, but they probably associate differently in vivo during the formation of the ribonucleoprotein complex. Electrostatic potential distribution on the surface of homology models of related coronaviral N-NTDs suggests that they use different modes of both RNA recognition and oligomeric assembly, perhaps explaining why their nucleocapsids have different morphologies.


Subject(s)
Nucleocapsid Proteins/chemistry , Nucleocapsid/chemistry , Severe acute respiratory syndrome-related coronavirus/physiology , Amino Acid Sequence , Coronavirus Nucleocapsid Proteins , Crystallography, X-Ray , Genome, Viral , Models, Molecular , Molecular Sequence Data , Nucleocapsid Proteins/metabolism , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/metabolism , Sequence Homology, Amino Acid , Viral Proteins/genetics
11.
J Virol ; 80(16): 7894-901, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16873246

ABSTRACT

The severe acute respiratory syndrome coronavirus (SARS-CoV) possesses a large 29.7-kb positive-stranded RNA genome. The first open reading frame encodes replicase polyproteins 1a and 1ab, which are cleaved to generate 16 "nonstructural" proteins, nsp1 to nsp16, involved in viral replication and/or RNA processing. Among these, nsp10 plays a critical role in minus-strand RNA synthesis in a related coronavirus, murine hepatitis virus. Here, we report the crystal structure of SARS-CoV nsp10 at a resolution of 1.8 A as determined by single-wavelength anomalous dispersion using phases derived from hexatantalum dodecabromide. nsp10 is a single domain protein consisting of a pair of antiparallel N-terminal helices stacked against an irregular beta-sheet, a coil-rich C terminus, and two Zn fingers. nsp10 represents a novel fold and is the first structural representative of this family of Zn finger proteins found so far exclusively in coronaviruses. The first Zn finger coordinates a Zn2+ ion in a unique conformation. The second Zn finger, with four cysteines, is a distant member of the "gag-knuckle fold group" of Zn2+-binding domains and appears to maintain the structural integrity of the C-terminal tail. A distinct clustering of basic residues on the protein surface suggests a nucleic acid-binding function. Gel shift assays indicate that in isolation, nsp10 binds single- and double-stranded RNA and DNA with high-micromolar affinity and without obvious sequence specificity. It is possible that nsp10 functions within a larger RNA-binding protein complex. However, its exact role within the replicase complex is still not clear.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Viral Nonstructural Proteins/chemistry , Zinc Fingers , Amino Acid Sequence , Crystallography, X-Ray , Molecular Sequence Data , Protein Conformation , Protein Folding , Viral Nonstructural Proteins/physiology
12.
Structure ; 13(11): 1665-75, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16271890

ABSTRACT

The crystal structure of a conserved domain of nonstructural protein 3 (nsP3) from severe acute respiratory syndrome coronavirus (SARS-CoV) has been solved by single-wavelength anomalous dispersion to 1.4 A resolution. The structure of this "X" domain, seen in many single-stranded RNA viruses, reveals a three-layered alpha/beta/alpha core with a macro-H2A-like fold. The putative active site is a solvent-exposed cleft that is conserved in its three structural homologs, yeast Ymx7, Archeoglobus fulgidus AF1521, and Er58 from E. coli. Its sequence is similar to yeast YBR022W (also known as Poa1P), a known phosphatase that acts on ADP-ribose-1''-phosphate (Appr-1''-p). The SARS nsP3 domain readily removes the 1'' phosphate group from Appr-1''-p in in vitro assays, confirming its phosphatase activity. Sequence and structure comparison of all known macro-H2A domains combined with available functional data suggests that proteins of this superfamily form an emerging group of nucleotide phosphatases that dephosphorylate Appr-1''-p.


Subject(s)
Adenosine Diphosphate Ribose/analogs & derivatives , Conserved Sequence/physiology , RNA-Dependent RNA Polymerase/chemistry , RNA-Dependent RNA Polymerase/physiology , Severe acute respiratory syndrome-related coronavirus/chemistry , Severe acute respiratory syndrome-related coronavirus/physiology , Viral Nonstructural Proteins/chemistry , Viral Nonstructural Proteins/physiology , Adenosine Diphosphate Ribose/metabolism , Amino Acid Sequence , Molecular Sequence Data , Phosphorylation , Protein Structure, Tertiary/physiology , Severe acute respiratory syndrome-related coronavirus/enzymology , Sequence Analysis, Protein , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL