Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
PLoS Genet ; 17(11): e1009916, 2021 11.
Article in English | MEDLINE | ID: mdl-34843450

ABSTRACT

Insect metamorphosis is triggered by the production, secretion and degradation of 20-hydroxyecdysone (ecdysone). In addition to its role in developmental regulation, increasing evidence suggests that ecdysone is involved in innate immunity processes, such as phagocytosis and the induction of antimicrobial peptide (AMP) production. AMP regulation includes systemic responses as well as local responses at surface epithelia that contact with the external environment. At pupariation, Drosophila melanogaster increases dramatically the expression of three AMP genes, drosomycin (drs), drosomycin-like 2 (drsl2) and drosomycin-like 5 (drsl5). We show that the systemic action of drs at pupariation is dependent on ecdysone signalling in the fat body and operates via the ecdysone downstream target, Broad. In parallel, ecdysone also regulates local responses, specifically through the activation of drsl2 expression in the gut. Finally, we confirm the relevance of this ecdysone dependent AMP expression for the control of bacterial load by showing that flies lacking drs expression in the fat body have higher bacterial persistence over metamorphosis. In contrast, local responses may be redundant with the systemic effect of drs since reduction of ecdysone signalling or of drsl2 expression has no measurable negative effect on bacterial load control in the pupa. Together, our data emphasize the importance of the association between ecdysone signalling and immunity using in vivo studies and establish a new role for ecdysone at pupariation, which impacts developmental success by regulating the immune system in a stage-dependent manner. We speculate that this co-option of immune effectors by the hormonal system may constitute an anticipatory mechanism to control bacterial numbers in the pupa, at the core of metamorphosis evolution.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Intercellular Signaling Peptides and Proteins/genetics , Metamorphosis, Biological/genetics , Animals , Antimicrobial Peptides/genetics , Drosophila melanogaster/growth & development , Ecdysone/genetics , Ecdysterone/genetics , Gene Expression Regulation, Developmental/genetics , Larva/genetics , Larva/growth & development , Pupa/genetics , Pupa/growth & development , Signal Transduction/genetics
2.
Evolution ; 75(8): 2085-2101, 2021 08.
Article in English | MEDLINE | ID: mdl-34156702

ABSTRACT

Wolbachia are maternally-inherited bacteria that induce cytoplasmic incompatibility in many arthropod species. However, the ubiquity of this isolation mechanism for host speciation processes remains elusive, as only few studies have examined Wolbachia-induced incompatibilities when host populations are not genetically compatible. Here, we used three populations of two genetically differentiated colour forms of the haplodiploid spider mite Tetranychus urticae to dissect the interaction between Wolbachia-induced and host-associated incompatibilities, and their relative contribution to postmating isolation. We found that these two sources of incompatibility act through different mechanisms in an additive fashion. Host-associated incompatibility contributes 1.5 times more than Wolbachia-induced incompatibility in reducing hybrid production, the former through an overproduction of haploid sons at the expense of diploid daughters (ca. 75% decrease) and the latter by increasing the embryonic mortality of daughters (by ca. 49%). Furthermore, regardless of cross direction, we observed near-complete F1 hybrid sterility and complete F2 hybrid breakdown between populations of the two forms, but Wolbachia did not contribute to this outcome. We thus show mechanistic independence and an additive nature of host-intrinsic and Wolbachia-induced sources of isolation. Wolbachia may contribute to reproductive isolation in this system, thereby potentially affecting host differentiation and distribution in the field.


Subject(s)
Mites , Tetranychidae , Wolbachia , Animals , Diploidy , Reproduction , Reproductive Isolation , Symbiosis , Tetranychidae/genetics
3.
FEBS J ; 288(13): 3928-3947, 2021 07.
Article in English | MEDLINE | ID: mdl-33021015

ABSTRACT

Organisms have constant contact with potentially harmful agents that can compromise their fitness. However, most of the times these agents fail to cause serious disease by virtue of the rapid and efficient immune responses elicited in the host that can range from behavioural adaptations to immune system triggering. The immune system of insects does not comprise the adaptive arm, making it less complex than that of vertebrates, but key aspects of the activation and regulation of innate immunity are conserved across different phyla. This is the case for the hormonal regulation of immunity as a part of the broad organismal responses to external conditions under different internal states. In insects, depending on the physiological circumstances, distinct hormones either enhance or suppress the immune response integrating individual (and often collective) responses physiologically and behaviourally. In this review, we provide an overview of our current knowledge on the endocrine regulation of immunity in insects, its mechanisms and implications on metabolic adaptation and behaviour. We highlight the importance of this multilayered regulation of immunity in survival and reproduction (fitness) and its dependence on the hormonal integration with other mechanisms and life-history traits.


Subject(s)
Adaptation, Physiological/immunology , Endocrine Cells/immunology , Immunity, Innate/immunology , Insecta/immunology , Animals , Fat Body/immunology , Fat Body/metabolism , Hemocytes/cytology , Hemocytes/immunology , Immunity, Cellular/immunology , Insecta/cytology , Insecta/metabolism , Juvenile Hormones/immunology , Juvenile Hormones/metabolism , Pore Forming Cytotoxic Proteins/biosynthesis , Pore Forming Cytotoxic Proteins/immunology
4.
Mol Biol Evol ; 37(9): 2661-2678, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32413142

ABSTRACT

Genetic variation is the fuel of evolution, with standing genetic variation especially important for short-term evolution and local adaptation. To date, studies of spatiotemporal patterns of genetic variation in natural populations have been challenging, as comprehensive sampling is logistically difficult, and sequencing of entire populations costly. Here, we address these issues using a collaborative approach, sequencing 48 pooled population samples from 32 locations, and perform the first continent-wide genomic analysis of genetic variation in European Drosophila melanogaster. Our analyses uncover longitudinal population structure, provide evidence for continent-wide selective sweeps, identify candidate genes for local climate adaptation, and document clines in chromosomal inversion and transposable element frequencies. We also characterize variation among populations in the composition of the fly microbiome, and identify five new DNA viruses in our samples.


Subject(s)
Drosophila melanogaster/genetics , Genome, Insect , Genomic Structural Variation , Microbiota , Selection, Genetic , Acclimatization/genetics , Altitude , Animals , DNA Viruses , Drosophila melanogaster/virology , Europe , Genome, Mitochondrial , Haplotypes , Insect Viruses , Male , Phylogeography , Polymorphism, Single Nucleotide
5.
Oecologia ; 189(1): 111-122, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30511092

ABSTRACT

To fight infection, arthropods rely on the deployment of an innate immune response but also upon physical/chemical barriers and avoidance behaviours. However, most studies focus on immunity, with other defensive mechanisms being relatively overlooked. We have previously shown that the spider mite Tetranychus urticae does not mount an induced immune response towards systemic bacterial infections, entailing very high mortality rates. Therefore, we hypothesized that other defence mechanisms may be operating to minimize infection risk. Here, we test (a) if spider mites are also highly susceptible to other infection routes-spraying and feeding-and (b) if they display avoidance behaviours towards infected food. Individuals sprayed with or fed on Escherichia coli or Pseudomonas putida survived less than the control, pointing to a deficient capacity of the gut epithelium, and possibly of the cuticle, to contain bacteria. Additionally, we found that spider mites prefer uninfected food to food contaminated with bacteria, a choice that probably does not rely on olfactory cues. Our results suggest that spider mites may rely mostly on avoidance behaviours to minimize bacterial infection and highlight the multi-layered nature of immune strategies present in arthropods.


Subject(s)
Arthropods , Bacterial Infections , Mites , Tetranychidae , Animals , Smell
6.
Evol Lett ; 2(6): 567-579, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30564440

ABSTRACT

Much has been learned about the genetics of aging from studies in model organisms, but still little is known about naturally occurring alleles that contribute to variation in longevity. For example, analysis of mutants and transgenes has identified insulin signaling as a major regulator of longevity, yet whether standing variation in this pathway underlies microevolutionary changes in lifespan and correlated fitness traits remains largely unclear. Here, we have analyzed the genomes of a set of Drosophila melanogaster lines that have been maintained under direct selection for postponed reproduction and indirect selection for longevity, relative to unselected control lines, for over 35 years. We identified many candidate loci shaped by selection for longevity and late-life fertility, but - contrary to expectation - we did not find overrepresentation of canonical longevity genes. Instead, we found an enrichment of immunity genes, particularly in the Toll pathway, suggesting that evolutionary changes in immune function might underpin - in part - the evolution of late-life fertility and longevity. To test whether this genomic signature is causative, we performed functional experiments. In contrast to control flies, long-lived flies tended to downregulate the expression of antimicrobial peptides upon infection with age yet survived fungal, bacterial, and viral infections significantly better, consistent with alleviated immunosenescence. To examine whether genes of the Toll pathway directly affect longevity, we employed conditional knockdown using in vivo RNAi. In adults, RNAi against the Toll receptor extended lifespan, whereas silencing the pathway antagonist cactus--causing immune hyperactivation - dramatically shortened lifespan. Together, our results suggest that genetic changes in the age-dependent regulation of immune homeostasis might contribute to the evolution of longer life.

7.
Genome Biol Evol ; 10(7): 1783-1791, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29947761

ABSTRACT

There is now ample evidence that endosymbionts can contribute to host adaptation to environmental challenges. However, how endosymbiont presence affects the adaptive trajectory and outcome of the host is yet largely unexplored. In Drosophila, Wolbachia confers protection to RNA virus infection, an effect that differs between Wolbachia strains and can be targeted by selection. Adaptation to RNA virus infections is mediated by both Wolbachia and the host, raising the question of whether adaptive genetic changes in the host vary with the presence/absence of the endosymbiont. Here, we address this question using a polymorphic D. melanogaster population previously adapted to DCV infection for 35 generations in the presence of Wolbachia, from which we removed the endosymbiont and followed survival over the subsequent 20 generations of infection. After an initial severe drop, survival frequencies upon DCV selection increased significantly, as seen before in the presence of Wolbachia. Whole-genome sequencing, revealed that the major genes involved in the first selection experiment, pastrel and Ubc-E2H, continued to be selected in Wolbachia-free D. melanogaster, with the frequencies of protective alleles being closer to fixation in the absence of Wolbachia. Our results suggest that heterogeneity in Wolbachia infection status may be sufficient to maintain polymorphisms even in the absence of costs.


Subject(s)
Drosophila melanogaster/microbiology , Drosophila melanogaster/virology , Insect Viruses/physiology , Symbiosis , Wolbachia/physiology , Adaptation, Physiological , Alleles , Animals , Drosophila melanogaster/genetics , Drosophila melanogaster/physiology , Genome, Insect , Host-Pathogen Interactions , Polymorphism, Genetic
8.
Mol Biol Evol ; 34(12): 3132-3147, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28961967

ABSTRACT

Pairs of duplicated genes generally display a combination of conserved expression patterns inherited from their unduplicated ancestor and newly acquired domains. However, how the cis-regulatory architecture of duplicated loci evolves to produce these expression patterns is poorly understood. We have directly examined the gene-regulatory evolution of two tandem duplicates, the Drosophila Ly6 genes CG9336 and CG9338, which arose at the base of the drosophilids between 40 and 60 Ma. Comparing the expression patterns of the two paralogs in four Drosophila species with that of the unduplicated ortholog in the tephritid Ceratitis capitata, we show that they diverged from each other as well as from the unduplicated ortholog. Moreover, the expression divergence appears to have occurred close to the duplication event and also more recently in a lineage-specific manner. The comparison of the tissue-specific cis-regulatory modules (CRMs) controlling the paralog expression in the four Drosophila species indicates that diverse cis-regulatory mechanisms, including the novel tissue-specific enhancers, differential inactivation, and enhancer sharing, contributed to the expression evolution. Our analysis also reveals a surprisingly variable cis-regulatory architecture, in which the CRMs driving conserved expression domains change in number, location, and specificity. Altogether, this study provides a detailed historical account that uncovers a highly dynamic picture of how the paralog expression patterns and their underlying cis-regulatory landscape evolve. We argue that our findings will encourage studying cis-regulatory evolution at the whole-locus level to understand how interactions between enhancers and other regulatory levels shape the evolution of gene expression.


Subject(s)
Drosophila Proteins/genetics , Enhancer Elements, Genetic/genetics , Gene Duplication/genetics , Animals , Drosophila melanogaster/genetics , Evolution, Molecular , Gene Expression Regulation, Developmental/genetics , Genes, Duplicate/genetics , Phylogeny , Sequence Analysis, Protein , Species Specificity
9.
Proc Biol Sci ; 284(1856)2017 Jun 14.
Article in English | MEDLINE | ID: mdl-28592670

ABSTRACT

The genome of the spider mite Tetranychus urticae, a herbivore, is missing important elements of the canonical Drosophila immune pathways necessary to fight bacterial infections. However, it is not known whether spider mites can mount an immune response and survive bacterial infection. In other chelicerates, bacterial infection elicits a response mediated by immune effectors leading to the survival of infected organisms. In T. urticae, infection by either Escherichia coli or Bacillus megaterium did not elicit a response as assessed through genome-wide transcriptomic analysis. In line with this, spider mites died within days even upon injection with low doses of bacteria that are non-pathogenic to Drosophila Moreover, bacterial populations grew exponentially inside the infected spider mites. By contrast, Sancassania berlesei, a litter-dwelling mite, controlled bacterial proliferation and resisted infections with both Gram-negative and Gram-positive bacteria lethal to T. urticae This differential mortality between mite species was absent when mites were infected with heat-killed bacteria. Also, we found that spider mites harbour in their gut 1000-fold less bacteria than S. berlesei We show that T. urticae has lost the capacity to mount an induced immune response against bacteria, in contrast to other mites and chelicerates but similarly to the phloem feeding aphid Acyrthosiphon pisum Hence, our results reinforce the putative evolutionary link between ecological conditions regarding exposure to bacteria and the architecture of the immune response.


Subject(s)
Bacteria/pathogenicity , Tetranychidae/immunology , Tetranychidae/microbiology , Animals , Herbivory , Transcriptome
10.
Mol Ecol ; 25(20): 4981-4983, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27714976

ABSTRACT

One of the major challenges in evolutionary biology is to unravel the genetic basis of adaptation. This issue has been gaining momentum in recent years with the accelerated development of novel genetic and genomic techniques and resources. In this issue of Molecular Ecology, Cogni et al. (2016) address the genetic basis of resistance to two viruses in Drosophila melanogaster using a panel of recombinant inbred lines with unprecedented resolution allowing detection of rare alleles and/or alleles of small effect. The study confirms the role of previously identified genes of major effect and adds novel regions with minor effect to the genetic basis of Drosophila resistance to the Drosophila C virus or the sigma virus. Additional analyses reveal the absence of cross-resistance and of epistasis between the various genomic regions. This detailed information on the genetic architecture of host resistance constitutes an important step towards the understanding of both the physiology of antiviral immunity and the evolution of host-parasite interactions.

11.
PLoS Genet ; 12(9): e1006297, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27684942

ABSTRACT

Microbial symbionts can modulate host interactions with biotic and abiotic factors. Such interactions may affect the evolutionary trajectories of both host and symbiont. Wolbachia protects Drosophila melanogaster against several viral infections and the strength of the protection varies between variants of this endosymbiont. Since Wolbachia is maternally transmitted, its fitness depends on the fitness of its host. Therefore, Wolbachia populations may be under selection when Drosophila is subjected to viral infection. Here we show that in D. melanogaster populations selected for increased survival upon infection with Drosophila C virus there is a strong selection coefficient for specific Wolbachia variants, leading to their fixation. Flies carrying these selected Wolbachia variants have higher survival and fertility upon viral infection when compared to flies with the other variants. These findings demonstrate how the interaction of a host with pathogens shapes the genetic composition of symbiont populations. Furthermore, host adaptation can result from the evolution of its symbionts, with host and symbiont functioning as a single evolutionary unit.

12.
Evolution ; 69(11): 2799-809, 2015 11.
Article in English | MEDLINE | ID: mdl-26496003

ABSTRACT

Pathogens exert a strong selective pressure on hosts, entailing host adaptation to infection. This adaptation often affects negatively other fitness-related traits. Such trade-offs may underlie the maintenance of genetic diversity for pathogen resistance. Trade-offs can be tested with experimental evolution of host populations adapting to parasites, using two approaches: (1) measuring changes in immunocompetence in relaxed-selection lines and (2) comparing life-history traits of evolved and control lines in pathogen-free environments. Here, we used both approaches to examine trade-offs in Drosophila melanogaster populations evolving for over 30 generations under infection with Drosophila C Virus or the bacterium Pseudomonas entomophila, the latter through different routes. We find that resistance is maintained after up to 30 generations of relaxed selection. Moreover, no differences in several classical life-history traits between control and evolved populations were found in pathogen-free environments, even under stresses such as desiccation, nutrient limitation, and high densities. Hence, we did not detect any maintenance costs associated with resistance to pathogens. We hypothesize that extremely high selection pressures commonly used lead to the disproportionate expression of costs relative to their actual occurrence in natural systems. Still, the maintenance of genetic variation for pathogen resistance calls for an explanation.


Subject(s)
Adaptation, Physiological/genetics , Biological Evolution , Disease Resistance/genetics , Drosophila melanogaster/genetics , Selection, Genetic , Animals , Drosophila melanogaster/immunology , Genetic Fitness , Insect Viruses , Larva , Life Cycle Stages , Linear Models , Proportional Hazards Models , Pseudomonas
13.
J Insect Physiol ; 81: 69-80, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26149766

ABSTRACT

Organisms from slime moulds to humans carefully regulate their macronutrient intake to optimize a wide range of life history characters including survival, stress resistance, and reproductive success. However, life history characters often differ in their response to nutrition, forcing organisms to make foraging decisions while balancing the trade-offs between these effects. To date, we have a limited understanding of how the nutritional environment shapes the relationship between life history characters and foraging decisions. To gain insight into the problem, we used a geometric framework for nutrition to assess how the protein and carbohydrate content of the larval diet affected key life history traits in the fruit fly, Drosophila melanogaster. In no-choice assays, survival from egg to pupae, female and male body size, and ovariole number - a proxy for female fecundity - were maximized at the highest protein to carbohydrate (P:C) ratio (1.5:1). In contrast, development time was minimized at intermediate P:C ratios, around 1:2. Next, we subjected larvae to two-choice tests to determine how they regulated their protein and carbohydrate intake in relation to these life history traits. Our results show that larvae targeted their consumption to P:C ratios that minimized development time. Finally, we examined whether adult females also chose to lay their eggs in the P:C ratios that minimized developmental time. Using a three-choice assay, we found that adult females preferentially laid their eggs in food P:C ratios that were suboptimal for all larval life history traits. Our results demonstrate that D. melanogaster larvae make foraging decisions that trade-off developmental time with body size, ovariole number, and survival. In addition, adult females make oviposition decisions that do not appear to benefit the larvae. We propose that these decisions may reflect the living nature of the larval nutritional environment in rotting fruit. These studies illustrate the interaction between the nutritional environment, life history traits, and foraging choices in D. melanogaster, and lend insight into the ecology of their foraging decisions.


Subject(s)
Drosophila melanogaster/growth & development , Drosophila melanogaster/physiology , Animal Nutritional Physiological Phenomena , Animals , Appetitive Behavior , Choice Behavior , Dietary Carbohydrates , Dietary Proteins , Female , Fertility/physiology , Food Preferences , Larva/growth & development , Larva/physiology , Male , Ovary/growth & development , Oviposition/physiology
14.
Mol Biol Evol ; 32(7): 1730-47, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25743545

ABSTRACT

Gene families often consist of members with diverse expression domains reflecting their functions in a wide variety of tissues. However, how the expression of individual members, and thus their tissue-specific functions, diversified during the course of gene family expansion is not well understood. In this study, we approached this question through the analysis of the duplication history and transcriptional evolution of a rapidly expanding subfamily of insect Ly6 genes. We analyzed different insect genomes and identified seven Ly6 genes that have originated from a single ancestor through sequential duplication within the higher Diptera. We then determined how the original embryonic expression pattern of the founding gene diversified by characterizing its tissue-specific expression in the beetle Tribolium castaneum, the butterfly Bicyclus anynana, and the mosquito Anopheles stephensi and those of its duplicates in three higher dipteran species, representing various stages of the duplication history (Megaselia abdita, Ceratitis capitata, and Drosophila melanogaster). Our results revealed that frequent neofunctionalization episodes contributed to the increased expression breadth of this subfamily and that these events occurred after duplication and speciation events at comparable frequencies. In addition, at each duplication node, we consistently found asymmetric expression divergence. One paralog inherited most of the tissue-specificities of the founder gene, whereas the other paralog evolved drastically reduced expression domains. Our approach attests to the power of combining a well-established duplication history with a comprehensive coverage of representative species in acquiring unequivocal information about the dynamics of gene expression evolution in gene families.


Subject(s)
Gene Expression Regulation , Genes, Insect , Insecta/genetics , Multigene Family , Animals , Embryo, Nonmammalian/metabolism , Evolution, Molecular , Gene Duplication , Gene Expression Profiling , Insecta/embryology , Organ Specificity/genetics , Phylogeny , Species Specificity
15.
Elife ; 42015 Feb 04.
Article in English | MEDLINE | ID: mdl-25650737

ABSTRACT

Virtually all species of coelomate animals contain blood cells that display a division of labor necessary for homeostasis. This functional partition depends upon the balance between proliferation and differentiation mostly accomplished in the hematopoietic organs. In Drosophila melanogaster, the lymph gland produces plasmatocytes and crystal cells that are not released until pupariation. Yet, throughout larval development, both hemocyte types increase in numbers. Mature plasmatocytes can proliferate but it is not known if crystal cell numbers increase by self-renewal or by de novo differentiation. We show that new crystal cells in third instar larvae originate through a Notch-dependent process of plasmatocyte transdifferentiation. This process occurs in the sessile clusters and is contingent upon the integrity of these structures. The existence of this hematopoietic tissue, relying on structure-dependent signaling events to promote blood homeostasis, creates a new paradigm for addressing outstanding questions in Drosophila hematopoiesis and establishing further parallels with vertebrate systems.


Subject(s)
Cell Differentiation/physiology , Drosophila melanogaster/cytology , Hematopoietic System/physiology , Hemocytes/physiology , Larva/metabolism , Animals , Drosophila melanogaster/growth & development , Hemocytes/cytology , Larva/growth & development
16.
Evol Dev ; 16(4): 233-46, 2014.
Article in English | MEDLINE | ID: mdl-24981069

ABSTRACT

Germband size in insects has played a central role in our understanding of insect patterning mechanisms and their evolution. The polarity of evolutionary change in insect patterning has been viewed so far as the unidirectional shift from the ancestral short germband patterning of basal hemimetabolous insects to the long germband patterning observed in most modern Holometabola. However, some orders of holometabolic insects display both short and long germband development, though the absence of a clear phylogenetic context does not permit definite conclusions on the polarity of change. Derived hymenoptera, that is, bees and wasps, represent a classical textbook example of long germband development. Yet, in some wasps putative short germband development has been described correlating with lifestyle changes, namely with evolution of endoparasitism and polyembryony. To address the potential reversion from long to short germband, we focused on the family Braconidae, which displays ancestral long germband development, and examined the derived polyembryonic braconid Macrocentrus cingulum. Using SEM analysis of M. cingulum embryogenesis coupled with analyses of embryonic patterning markers, we show that this wasp evolved short germband embryogenesis secondarily, in a way that is reminiscent of embryogenesis in the beetle Tribolium castaneum. This work shows that the evolution of germband size in insects is a reversible process that may correlate with other life-history traits and suggests broader implications on the mechanisms and evolvability of insect development.


Subject(s)
Biological Evolution , Insecta/growth & development , Wasps/growth & development , Animals , Body Patterning , Embryo, Nonmammalian/ultrastructure , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Morphogenesis
17.
Proc Natl Acad Sci U S A ; 111(16): 5938-43, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24711428

ABSTRACT

Host adaptation to one parasite may affect its response to others. However, the genetics of these direct and correlated responses remains poorly studied. The overlap between these responses is instrumental for the understanding of host evolution in multiparasite environments. We determined the genetic and phenotypic changes underlying adaptation of Drosophila melanogaster to Drosophila C virus (DCV). Within 20 generations, flies selected with DCV showed increased survival after DCV infection, but also after cricket paralysis virus (CrPV) and flock house virus (FHV) infection. Whole-genome sequencing identified two regions of significant differentiation among treatments, from which candidate genes were functionally tested with RNAi. Three genes were validated--pastrel, a known DCV-response gene, and two other loci, Ubc-E2H and CG8492. Knockdown of Ubc-E2H and pastrel also led to increased sensitivity to CrPV, whereas knockdown of CG8492 increased susceptibility to FHV infection. Therefore, Drosophila adaptation to DCV relies on few major genes, each with different cross-resistance properties, conferring host resistance to several parasites.


Subject(s)
Adaptation, Physiological/genetics , Disease Resistance/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/virology , Genes, Insect/genetics , Host-Pathogen Interactions/immunology , Insect Viruses/immunology , Adaptation, Physiological/immunology , Animals , Disease Resistance/immunology , Drosophila melanogaster/immunology , Gene Knockdown Techniques , Genetic Association Studies , Host-Pathogen Interactions/genetics , Parasites/immunology , RNA Interference , Reproducibility of Results , Selection, Genetic , Species Specificity , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/virology
18.
PLoS Comput Biol ; 10(3): e1003527, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24675973

ABSTRACT

The Drosophila eggshell constitutes a remarkable system for the study of epithelial patterning, both experimentally and through computational modeling. Dorsal eggshell appendages arise from specific regions in the anterior follicular epithelium that covers the oocyte: two groups of cells expressing broad (roof cells) bordered by rhomboid expressing cells (floor cells). Despite the large number of genes known to participate in defining these domains and the important modeling efforts put into this developmental system, key patterning events still lack a proper mechanistic understanding and/or genetic basis, and the literature appears to conflict on some crucial points. We tackle these issues with an original, discrete framework that considers single-cell models that are integrated to construct epithelial models. We first build a phenomenological model that reproduces wild type follicular epithelial patterns, confirming EGF and BMP signaling input as sufficient to establish the major features of this patterning system within the anterior domain. Importantly, this simple model predicts an instructive juxtacrine signal linking the roof and floor domains. To explore this prediction, we define a mechanistic model that integrates the combined effects of cellular genetic networks, cell communication and network adjustment through developmental events. Moreover, we focus on the anterior competence region, and postulate that early BMP signaling participates with early EGF signaling in its specification. This model accurately simulates wild type pattern formation and is able to reproduce, with unprecedented level of precision and completeness, various published gain-of-function and loss-of-function experiments, including perturbations of the BMP pathway previously seen as conflicting results. The result is a coherent model built upon rules that may be generalized to other epithelia and developmental systems.


Subject(s)
Drosophila melanogaster/physiology , Egg Proteins/metabolism , Animals , Bone Morphogenetic Proteins/metabolism , Computational Biology , Computer Simulation , Epidermal Growth Factor/metabolism , Epithelium/metabolism , Gene Expression Regulation, Developmental , Gene Regulatory Networks , Morphogenesis/genetics , Mutation , Oocytes/cytology , Oogenesis/physiology , Signal Transduction , Software , Vitelline Membrane/metabolism
19.
PLoS Pathog ; 9(10): e1003720, 2013 Oct.
Article in English | MEDLINE | ID: mdl-24204269

ABSTRACT

Coupling immunity and development is essential to ensure survival despite changing internal conditions in the organism. Drosophila metamorphosis represents a striking example of drastic and systemic physiological changes that need to be integrated with the innate immune system. However, nothing is known about the mechanisms that coordinate development and immune cell activity in the transition from larva to adult. Here, we reveal that regulation of macrophage-like cells (hemocytes) by the steroid hormone ecdysone is essential for an effective innate immune response over metamorphosis. Although it is generally accepted that steroid hormones impact immunity in mammals, their action on monocytes (e.g. macrophages and neutrophils) is still not well understood. Here in a simpler model system, we used an approach that allows in vivo, cell autonomous analysis of hormonal regulation of innate immune cells, by combining genetic manipulation with flow cytometry, high-resolution time-lapse imaging and tissue-specific transcriptomic analysis. We show that in response to ecdysone, hemocytes rapidly upregulate actin dynamics, motility and phagocytosis of apoptotic corpses, and acquire the ability to chemotax to damaged epithelia. Most importantly, individuals lacking ecdysone-activated hemocytes are defective in bacterial phagocytosis and are fatally susceptible to infection by bacteria ingested at larval stages, despite the normal systemic and local production of antimicrobial peptides. This decrease in survival is comparable to the one observed in pupae lacking immune cells altogether, indicating that ecdysone-regulation is essential for hemocyte immune functions and survival after infection. Microarray analysis of hemocytes revealed a large set of genes regulated at metamorphosis by EcR signaling, among which many are known to function in cell motility, cell shape or phagocytosis. This study demonstrates an important role for steroid hormone regulation of immunity in vivo in Drosophila, and paves the way for genetic dissection of the mechanisms at work behind steroid regulation of innate immune cells.


Subject(s)
Bacterial Infections/immunology , Hemocytes/immunology , Insect Hormones/immunology , Phagocytosis , Signal Transduction/immunology , Steroids/immunology , Animals , Drosophila melanogaster , Hemocytes/microbiology , Larva/immunology , Larva/microbiology
20.
PLoS Pathog ; 9(9): e1003601, 2013.
Article in English | MEDLINE | ID: mdl-24086131

ABSTRACT

Evolution of pathogen virulence is affected by the route of infection. Also, alternate infection routes trigger different physiological responses on hosts, impinging on host adaptation and on its interaction with pathogens. Yet, how route of infection may shape adaptation to pathogens has not received much attention at the experimental level. We addressed this question through the experimental evolution of an outbred Drosophila melanogaster population infected by two different routes (oral and systemic) with Pseudomonas entomophila. The two selection regimes led to markedly different evolutionary trajectories. Adaptation to infection through one route did not protect from infection through the alternate route, indicating distinct genetic bases. Finally, relatively to the control population, evolved flies were not more resistant to bacteria other than Pseudomonas and showed higher susceptibility to viral infections. These specificities and trade-offs may contribute to the maintenance of genetic variation for resistance in natural populations. Our data shows that the infection route affects host adaptation and thus, must be considered in studies of host-pathogen interaction.


Subject(s)
Adaptation, Physiological/immunology , Immunity, Innate , Pseudomonas Infections/immunology , Pseudomonas/immunology , Animals , Drosophila melanogaster , Pseudomonas Infections/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...