Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Clin Transl Sci ; 17(6): e13818, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38807449

ABSTRACT

A study to determine the impact of cyclosporine (Neoral), an inhibitor of P-gp, on the pharmacokinetics of pralsetinib (trade name GAVRETO®) was conducted in 15 healthy adult volunteers. A single 200 mg dose of pralsetinib was administered orally alone and in combination with cyclosporine with a 9-day washout between treatments. Co-administration with cyclosporine resulted in a clinically relevant increase in pralsetinib maximum plasma concentration (Cmax) and area under the plasma concentration-time curve extrapolated to infinity (AUC0-∞) with associated geometric mean ratios (GMRs) and 90% confidence intervals (CIs) of 148% (109, 201) and 181% (136, 241), respectively. These findings provide insight into concomitant dosing of pralsetinib with inhibitors of P-gp given the increases in pralsetinib exposure observed when administered with cyclosporine. Based on these results, co-administration of pralsetinib with P-gp inhibitors is not recommended. In the event that co-administration cannot be avoided, it is recommended that the dose of pralsetinib be reduced.


Subject(s)
Cyclosporine , Drug Interactions , Healthy Volunteers , Humans , Male , Adult , Cyclosporine/administration & dosage , Cyclosporine/pharmacokinetics , Female , Young Adult , Area Under Curve , Middle Aged , Administration, Oral , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Dose-Response Relationship, Drug , Benzimidazoles/pharmacokinetics , Benzimidazoles/administration & dosage
2.
Clin Transl Sci ; 15(1): 130-140, 2022 01.
Article in English | MEDLINE | ID: mdl-34432389

ABSTRACT

Baseline patient characteristics and prognostic factors are important considerations in oncology when evaluating the impact of immunogenicity on pharmacokinetics (PK) and efficacy. Here, we assessed the impact of anti-drug antibodies (ADA) on the PK of the immune checkpoint inhibitor atezolizumab (an anti-PD-L1 monoclonal antibody). We evaluated data from ≈ 4500 patients from 12 clinical trials across different tumor types, treatment settings, and dosing regimens. In our dataset, ~ 30% of patients (range, 13-54%) developed treatment-emergent ADA, and in vitro neutralizing antibodies (NAb) were seen in ~ 50% of ADA-positive (+) patients. Pooled time course data showed a trend toward lower atezolizumab exposure in ADA+ patients, which was more pronounced in ADA+/NAb+ patients. However, the atezolizumab concentration distributions overlapped, and drug concentrations exceeded 6 µg/ml, the target concentration required for receptor saturation, in greater than 95% of patients. Patients had sufficient exposure regardless of ADA status. The dose selected to allow for dosing over effects from ADA resulted in a flat exposure-response relationship. Analysis of study results by ADA titer showed that exposure and overall survival were not affected in a clinically meaningful way. High tumor burden, low albumin, and high CRP at baseline showed the greatest association with ADA development but not with subsequent NAb development. These imbalanced factors at baseline can confound analysis of ADA impact. ADA increases atezolizumab clearance minimally (9%), and its impact on exposure based on the totality of the clinical pharmacology assessment does not appear to be clinically meaningful.


Subject(s)
Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/metabolism , Immune Checkpoint Inhibitors/immunology , Immune Checkpoint Inhibitors/pharmacokinetics , Pharmacology, Clinical , Clinical Trials as Topic , Humans , Neoplasms/drug therapy
3.
Br J Clin Pharmacol ; 85(8): 1751-1760, 2019 08.
Article in English | MEDLINE | ID: mdl-30973970

ABSTRACT

AIMS: Navoximod (GDC-0919, NLG-919) is a small molecule inhibitor of indoleamine-2,3-dioxygenase 1 (IDO1), developed to treat the acquired immune tolerance associated with cancer. The primary objectives of this study were to assess navoximod's absolute bioavailability (aBA), determine the mass balance and routes of elimination of [14 C]-navoximod, and characterize navoximod's metabolite profile. METHODS: A phase 1, open-label, two-part study was conducted in healthy volunteers. In Part 1 (aBA), subjects (n = 16) were randomized to receive oral (200 mg tablet) or intravenous (5 mg solution) navoximod in a crossover design with a 5-day washout. In Part 2 (mass balance), subjects (n = 8) were administered [14 C]-navoximod (200 mg/600 µCi) as an oral solution. RESULTS: The aBA of navoximod was estimated to be 55.5%, with a geometric mean (%CV) plasma clearance and volume of distribution of 62.0 L/h (21.0%) and 1120 L (28.4%), respectively. Mean recovery of total radioactivity was 87.8%, with 80.4% detected in urine and the remainder (7.4%) in faeces. Navoximod was extensively metabolized, with unchanged navoximod representing 5.45% of the dose recovered in the urine and faeces. Glucuronidation was identified as the primary route of metabolism, with the major glucuronide metabolite, M28, accounting for 57.5% of the total drug-derived exposure and 59.7% of the administered dose recovered in urine. CONCLUSIONS: Navoximod was well tolerated, quickly absorbed and showed moderate bioavailability, with minimal recovery of the dose as unchanged parent in the urine and faeces. Metabolism was identified as the primary route of clearance and navoximod glucuronide (M28) was the most abundant metabolite in circulation with all other metabolites accounting for <10% of drug-related exposure.


Subject(s)
Imidazoles/pharmacokinetics , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Indoles/pharmacokinetics , Administration, Intravenous , Administration, Oral , Adult , Biological Availability , Cross-Over Studies , Female , Healthy Volunteers , Humans , Imidazoles/administration & dosage , Indoles/administration & dosage , Intestinal Elimination , Male , Metabolic Clearance Rate , Middle Aged , Neoplasms/drug therapy , Neoplasms/immunology , Renal Elimination , Tumor Escape/drug effects , Young Adult
4.
Clin Cancer Res ; 25(11): 3220-3228, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30770348

ABSTRACT

PURPOSE: IDO1 induces immune suppression in T cells through l-tryptophan (Trp) depletion and kynurenine (Kyn) accumulation in the local tumor microenvironment, suppressing effector T cells and hyperactivating regulatory T cells (Treg). Navoximod is an investigational small-molecule inhibitor of IDO1. This phase I study evaluated safety, tolerability, pharmacokinetics, and pharmacodynamics of navoximod in combination with atezolizumab, a PD-L1 inhibitor, in patients with advanced cancer. PATIENTS AND METHODS: The study consisted of a 3+3 dose-escalation stage (n = 66) and a tumor-specific expansion stage (n = 92). Navoximod was given orally every 12 hours continuously for 21 consecutive days of each cycle with the exception of cycle 1, where navoximod administration started on day -1 to characterize pharmacokinetics. Atezolizumab was administered by intravenous infusion 1,200 mg every 3 weeks on day 1 of each cycle. RESULTS: Patients (n = 157) received navoximod at 6 dose levels (50-1,000 mg) in combination with atezolizumab. The maximum administered dose was 1,000 mg twice daily; the MTD was not reached. Navoximod demonstrated a linear pharmacokinetic profile, and plasma Kyn generally decreased with increasing doses of navoximod. The most common treatment-related AEs were fatigue (22%), rash (22%), and chromaturia (20%). Activity was observed at all dose levels in various tumor types (melanoma, pancreatic, prostate, ovarian, head and neck squamous cell carcinoma, cervical, neural sheath, non-small cell lung cancer, triple-negative breast cancer, renal cell carcinoma, urothelial bladder cancer): 6 (9%) dose-escalation patients achieved partial response, and 10 (11%) expansion patients achieved partial response or complete response. CONCLUSIONS: The combination of navoximod and atezolizumab demonstrated acceptable safety, tolerability, and pharmacokinetics for patients with advanced cancer. Although activity was observed, there was no clear evidence of benefit from adding navoximod to atezolizumab.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B7-H1 Antigen/antagonists & inhibitors , Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors , Neoplasms/drug therapy , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/pharmacokinetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Biomarkers, Tumor , Humans , Imidazoles/administration & dosage , Imidazoles/pharmacokinetics , Indoles/administration & dosage , Indoles/pharmacokinetics , Magnetic Resonance Imaging , Middle Aged , Neoplasm Metastasis , Neoplasm Staging , Neoplasms/diagnosis , Neoplasms/etiology , Neoplasms/metabolism , Tomography, X-Ray Computed , Treatment Outcome
5.
J Med Chem ; 59(1): 431-47, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26652588

ABSTRACT

Lead optimization efforts resulted in the discovery of two potent, selective, and orally bioavailable PI3Kδ inhibitors, 1 (AM-8508) and 2 (AM-9635), with good pharmacokinetic properties. The compounds inhibit B cell receptor (BCR)-mediated AKT phosphorylation (pAKT) in PI3Kδ-dependent in vitro cell based assays. These compounds which share a benzimidazole bicycle are effective when administered in vivo at unbound concentrations consistent with their in vitro cell potency as a consequence of improved unbound drug concentration with lower unbound clearance. Furthermore, the compounds demonstrated efficacy in a Keyhole Limpet Hemocyanin (KLH) study in rats, where the blockade of PI3Kδ activity by inhibitors 1 and 2 led to effective inhibition of antigen-specific IgG and IgM formation after immunization with KLH.


Subject(s)
Benzimidazoles/chemical synthesis , Benzimidazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Animals , B-Lymphocytes/drug effects , Crystallography, X-Ray , Hemocyanins/drug effects , Humans , Immunoglobulin G/drug effects , Immunoglobulin M/drug effects , Mice , Models, Molecular , Rats , Structure-Activity Relationship
7.
J Med Chem ; 57(8): 3430-49, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-24641103

ABSTRACT

We describe the structural optimization of a lead compound 1 that exhibits dual inhibitory activities against FLT3 and CDK4. A series of pyrido[4',3':4,5]pyrrolo[2,3-d]pyrimidine derivatives was synthesized, and SAR analysis, using cell-based assays, led to the discovery of 28 (AMG 925), a potent and orally bioavailable dual inhibitor of CDK4 and FLT3, including many FLT3 mutants reported to date. Compound 28 inhibits the proliferation of a panel of human tumor cell lines including Colo205 (Rb(+)) and U937 (FLT3(WT)) and induced cell death in MOLM13 (FLT3(ITD)) and even in MOLM13 (FLT3(ITD, D835Y)), which exhibits resistance to a number of FLT3 inhibitors currently under clinical development. At well-tolerated doses, compound 28 leads to significant growth inhibition of MOLM13 xenografts in nude mice, and the activity correlates with inhibition of STAT5 and Rb phosphorylation.


Subject(s)
Cyclin-Dependent Kinase 4/antagonists & inhibitors , Heterocyclic Compounds, 3-Ring/chemical synthesis , Naphthyridines/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , Animals , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cytochrome P-450 CYP3A , Cytochrome P-450 CYP3A Inhibitors , Dogs , Drug Discovery , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Macaca fascicularis , Naphthyridines/pharmacology , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/pharmacology , Rats , Structure-Activity Relationship , U937 Cells , fms-Like Tyrosine Kinase 3/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...