Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 7487, 2022 05 06.
Article in English | MEDLINE | ID: mdl-35523932

ABSTRACT

Humpback whales (Megaptera novaeangliae) perform seasonal migrations from high latitude feeding grounds to low latitude breeding and calving grounds. Feeding grounds at polar regions are currently experiencing major ecosystem modifications, therefore, quantitatively assessing species responses to habitat characteristics is crucial for understanding how whales might respond to such modifications. We analyzed satellite telemetry data from 22 individual humpback whales in the Southwest Atlantic Ocean (SWA). Tagging effort was divided in two periods, 2003-2012 and 2016-2019. Correlations between whale's movement parameters and environmental variables were used as proxy for inferring behavioral responses to environmental variation. Two versions of a covariate-driven continuous-time correlated random-walk state-space model, were fitted to the data: i) Population-level models (P-models), which assess correlation parameters pooling data across all individuals or groups, and ii) individual-level models (I-models), fitted independently for each tagged whale. Area of Restricted Search behavior (slower and less directionally persistent movement, ARS) was concentrated at cold waters south of the Polar Front (~ 50°S). The best model showed that ARS was expected to occur in coastal areas and over ridges and seamounts. Ice coverage during August of each year was a consistent predictor of ARS across models. Wind stress curl and sea surface temperature anomalies were also correlated with movement parameters but elicited larger inter-individual variation. I-models were consistent with P-models' predictions for the case of females accompanied by calves (mothers), while males and those of undetermined sex (males +) presented more variability as a group. Spatial predictions of humpback whale behavioral responses showed that feeding grounds for this population are concentrated in the complex system of islands, ridges, and rises of the Scotia Sea and the northern Weddell Ridge. More southernly incursions were observed in recent years, suggesting a potential response to increased temperature and large ice coverage reduction observed in the late 2010s. Although, small sample size and differences in tracking duration precluded appropriately testing predictions for such a distributional shift, our modelling framework showed the efficiency of borrowing statistical strength during data pooling, while pinpointing where more complexity should be added in the future as additional data become available.


Subject(s)
Humpback Whale , Animals , Atlantic Ocean , Cetacea , Ecosystem , Female , Humpback Whale/physiology , Ice , Male
2.
PLoS One ; 13(3): e0194213, 2018.
Article in English | MEDLINE | ID: mdl-29534086

ABSTRACT

Estimation of visibility bias is critical to accurately compute abundance of wild populations. The franciscana, Pontoporia blainvillei, is considered the most threatened small cetacean in the southwestern Atlantic Ocean. Aerial surveys are considered the most effective method to estimate abundance of this species, but many existing estimates have been considered unreliable because they lack proper estimation of correction factors for visibility bias. In this study, helicopter surveys were conducted to determine surfacing-diving intervals of franciscanas and to estimate availability for aerial platforms. Fifteen hours were flown and 101 groups of 1 to 7 franciscanas were monitored, resulting in a sample of 248 surface-dive cycles. The mean surfacing interval and diving interval times were 16.10 seconds (SE = 9.74) and 39.77 seconds (SE = 29.06), respectively. Availability was estimated at 0.39 (SE = 0.01), a value 16-46% greater than estimates computed from diving parameters obtained from boats or from land. Generalized mixed-effects models were used to investigate the influence of biological and environmental predictors on the proportion of time franciscana groups are visually available to be seen from an aerial platform. These models revealed that group size was the main factor influencing the proportion at surface. The use of negatively biased estimates of availability results in overestimation of abundance, leads to overly optimistic assessments of extinction probabilities and to potentially ineffective management actions. This study demonstrates that estimates of availability must be computed from suitable platforms to ensure proper conservation decisions are implemented to protect threatened species such as the franciscana.


Subject(s)
Dolphins , Ecological Parameter Monitoring/methods , Endangered Species/statistics & numerical data , Aircraft , Animals , Atlantic Ocean , Bias , Ecological Parameter Monitoring/instrumentation , Linear Models
3.
J Acoust Soc Am ; 138(4): 2495-8, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520331

ABSTRACT

Acoustic parameters for the spinner dolphins' bioacoustic sounds have previously been described. However, the dolphins in the Southwest Atlantic Ocean were only recently studied near the Fernando de Noronha Archipelago. Therefore, to contribute to additional knowledge of this cosmopolitan species, this study compares previous results with a Brazilian recording. Despite statistically significant differences, the mean value comparison indicated that Hawaiian and Southwest Atlantic Ocean spinners emit similar whistles. The fact that geographical isolation does not lead the dissemblance nor the similarity of the acoustic variations in this species raises the possibility of other factors influencing those emissions. Here those differences and similarities are discussed, thereby contributing to an understanding of how distinct populations and/or species communicate through different ocean basins.


Subject(s)
Stenella/physiology , Vocalization, Animal , Acoustics , Animals , Atlantic Ocean , Cluster Analysis , Demography , Sound Spectrography
4.
J Acoust Soc Am ; 138(3): 1696-701, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26428807

ABSTRACT

Acoustic parameters of killer whale (Orcinus orca) whistles were described for the western South Atlantic Ocean and highlight the occurrence of high frequency whistles. Killer whale signals were recorded on December of 2012, when a pod of four individuals was observed harassing a group of sperm whales. The high frequency whistles were highly stereotyped and were modulated mostly at ultrasonic frequencies. Compared to other contour types, the high frequency whistles are characterized by higher bandwidths, shorter durations, fewer harmonics, and higher sweep rates. The results add to the knowledge of vocal behavior of this species.


Subject(s)
Vocalization, Animal/physiology , Whale, Killer/physiology , Animals , Atlantic Ocean , Psychoacoustics , Social Behavior , Sound Spectrography
SELECTION OF CITATIONS
SEARCH DETAIL
...