Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cancer ; 22(1): 181, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37957606

ABSTRACT

The limited sensitivity of circulating tumor cell (CTC) detection in pancreatic adenocarcinoma (PDAC) stems from their extremely low concentration in the whole circulating blood, necessitating enhanced detection methodologies. This study sought to amplify assay-sensitivity by employing diagnostic leukapheresis (DLA) to screen large blood volumes. Sixty patients were subjected to DLA, with a median processed blood volume of ~ 2.8 L and approximately 5% of the resulting DLA-product analyzed using CellSearch (CS). Notably, DLA significantly increased CS-CTC detection to 44% in M0-patients and 74% in M1-patients, yielding a 60-fold increase in CS-CTC enumeration. DLA also provided sufficient CS-CTCs for genomic profiling, thereby delivering additional genomic information compared to tissue biopsy samples. DLA CS-CTCs exhibited a pronounced negative prognostic impact on overall survival (OS), evidenced by a reduction in OS from 28.6 to 8.5 months (univariate: p = 0.002; multivariable: p = 0.043). Additionally, a marked enhancement in sensitivity was achieved (by around 3-4-times) compared to peripheral blood (PB) samples, with positive predictive values for OS being preserved at around 90%. Prognostic relevance of CS-CTCs in PDAC was further validated in PB-samples from 228 PDAC patients, consolidating the established association between CTC-presence and reduced OS (8.5 vs. 19.0 months, p < 0.001). In conclusion, DLA-derived CS-CTCs may serve as a viable tool for identifying high-risk PDAC-patients and aiding the optimization of multimodal treatment strategies. Moreover, DLA enables comprehensive diagnostic profiling by providing ample CTC material, reinforcing its utility as a reliable liquid-biopsy approach. This high-volume liquid-biopsy strategy presents a potential pathway for enhancing clinical management in this malignancy.


Subject(s)
Adenocarcinoma , Neoplastic Cells, Circulating , Pancreatic Neoplasms , Humans , Pancreatic Neoplasms/diagnosis , Adenocarcinoma/diagnosis , Neoplastic Cells, Circulating/pathology , Liquid Biopsy/methods , Biomarkers, Tumor , Blood Volume , Pancreatic Neoplasms
2.
Sci Rep ; 10(1): 15205, 2020 09 16.
Article in English | MEDLINE | ID: mdl-32938993

ABSTRACT

Psychogenic nonepileptic seizures (PNES) are diagnosed in approximately 30% of patients referred to tertiary care epilepsy centers. Little is known about the molecular pathology of PNES, much less about possible underlying genetic factors. We generated whole-exome sequencing and whole-genome genotyping data to identify rare, pathogenic (P) or likely pathogenic (LP) variants in 102 individuals with PNES and 448 individuals with focal (FE) or generalized (GE) epilepsy. Variants were classified for all individuals based on the ACMG-AMP 2015 guidelines. For research purposes only, we considered genes associated with neurological or psychiatric disorders as candidate genes for PNES. We observe in this first genetic investigation of PNES that six (5.88%) individuals with PNES without coexistent epilepsy carry P/LP variants (deletions at 10q11.22-q11.23, 10q23.1-q23.2, distal 16p11.2, and 17p13.3, and nonsynonymous variants in NSD1 and GABRA5). Notably, the burden of P/LP variants among the individuals with PNES was similar and not significantly different to the burden observed in the individuals with FE (3.05%) or GE (1.82%) (PNES vs. FE vs. GE (3 × 2 χ2), P = 0.30; PNES vs. epilepsy (2 × 2 χ2), P = 0.14). The presence of variants in genes associated with monogenic forms of neurological and psychiatric disorders in individuals with PNES shows that genetic factors are likely to play a role in PNES or its comorbidities in a subset of individuals. Future large-scale genetic research studies are needed to further corroborate these interesting findings in PNES.


Subject(s)
Epilepsies, Partial/genetics , Epilepsy, Generalized/genetics , Exome Sequencing/methods , Genome-Wide Association Study/methods , Seizures/genetics , Adult , Amino Acid Substitution , Chromosomes, Human/genetics , Female , Genetic Predisposition to Disease , Histone-Lysine N-Methyltransferase/genetics , Humans , Male , Middle Aged , Receptors, GABA-A/genetics , Sequence Deletion , Young Adult
3.
Bioinformatics ; 35(21): 4478-4479, 2019 11 01.
Article in English | MEDLINE | ID: mdl-31086968

ABSTRACT

MOTIVATION: The correct classification of missense variants as benign or pathogenic remains challenging. Pathogenic variants are expected to have higher deleterious prediction scores than benign variants in the same gene. However, most of the existing variant annotation tools do not reference the score range of benign population variants on gene level. RESULTS: We present a web-application, Variant Score Ranker, which enables users to rapidly annotate variants and perform gene-specific variant score ranking on the population level. We also provide an intuitive example of how gene- and population-calibrated variant ranking scores can improve epilepsy variant prioritization. AVAILABILITY AND IMPLEMENTATION: http://vsranker.broadinstitute.org. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Mutation, Missense , Software
4.
J Med Chem ; 62(7): 3513-3523, 2019 04 11.
Article in English | MEDLINE | ID: mdl-30852892

ABSTRACT

Tridegin is a potent and specific 66mer peptide inhibitor of coagulation factor XIIIa with six cysteines involved in three disulfide bonds. Three of the 15 possible 3-disulfide-bonded isomers have been identified, which share a bridge between cysteines 19 and 25. We synthesized the three possible 2-disulfide-bonded analogues using a targeted protecting group strategy to investigate the impact of the C19-C25 bond on tridegin's folding, stability, and function. The FXIIIa inhibitory activity of the analogues was retained, which was shown by in vitro fluorogenic activity and whole blood clotting assays. Molecular dynamics simulations of wild-type tridegin and the analogues as well as molecular docking studies with FXIIIa were performed to elucidate the impact of the C19-C25 bond on conformational stability and binding mode. The strategy of selectively reducing disulfide bonds to facilitate large-scale synthesis, while retaining the functionality of disulfide-bonded peptides, has been demonstrated with our present study.


Subject(s)
Disulfides/chemistry , Factor XIIIa/antagonists & inhibitors , Salivary Proteins and Peptides/pharmacology , Animals , Blood Coagulation/drug effects , Humans , Isomerism , Leeches , Molecular Dynamics Simulation , Protein Folding , Protein Stability , Salivary Proteins and Peptides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL