Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
BMC Biol ; 22(1): 91, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38654271

ABSTRACT

BACKGROUND: Elephant seals exhibit extreme hypoxemic tolerance derived from repetitive hypoxia/reoxygenation episodes they experience during diving bouts. Real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture model from elephant seals and used RNA-seq, functional assays, and confocal microscopy to assess the molecular response to prolonged hypoxia. RESULTS: Seal and human endothelial cells exposed to 1% O2 for up to 6 h respond differently to acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling. Rapid upregulation of genes involved in glutathione (GSH) metabolism supports the maintenance of GSH pools, and intracellular succinate increases in seal but not human cells. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurs in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting that seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. CONCLUSIONS: We found that the glutathione antioxidant system is upregulated in seal endothelial cells during hypoxia, while this system remains static in comparable human cells. Furthermore, we found that in contrast to human cells, hypoxia exposure rapidly activates HIF-1 in seal cells, but this response is decoupled from the canonical angiogenesis pathway. These results highlight the unique mechanisms that confer extraordinary tolerance to limited oxygen availability in a champion diving mammal.


Subject(s)
Antioxidants , Endothelial Cells , Seals, Earless , Signal Transduction , Up-Regulation , Animals , Seals, Earless/physiology , Seals, Earless/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Antioxidants/metabolism , Humans , Hypoxia/metabolism , Cell Hypoxia , Neovascularization, Physiologic/drug effects , Neovascularization, Physiologic/physiology , Cells, Cultured , Glutathione/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics
2.
bioRxiv ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38370750

ABSTRACT

The adoption of agriculture, first documented ~12,000 years ago in the Fertile Crescent, triggered a rapid shift toward starch-rich diets in human populations. Amylase genes facilitate starch digestion and increased salivary amylase copy number has been observed in some modern human populations with high starch intake, though evidence of recent selection is lacking. Here, using 52 long-read diploid assemblies and short read data from ~5,600 contemporary and ancient humans, we resolve the diversity, evolutionary history, and selective impact of structural variation at the amylase locus. We find that both salivary and pancreatic amylase genes have higher copy numbers in populations with agricultural subsistence compared to fishing, hunting, and pastoral groups. We identify 28 distinct amylase structural architectures and demonstrate that identical structures have arisen independently multiple times throughout recent human history. Using a pangenome graph-based approach to infer structural haplotypes across thousands of humans, we identify extensively duplicated haplotypes present at higher frequencies in modern agricultural populations. Leveraging 534 ancient human genomes we find that duplication-containing haplotypes have increased in frequency more than seven-fold over the last 12,000 years providing evidence for recent selection in Eurasians at this locus comparable in magnitude to that at lactase. Together, our study highlights the strong impact of the agricultural revolution on human genomes and the importance of long-read sequencing in identifying signatures of selection at structurally complex loci.

3.
Nat Ecol Evol ; 8(5): 1021-1034, 2024 May.
Article in English | MEDLINE | ID: mdl-38361161

ABSTRACT

Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mitochondrial genome in different tissues throughout ageing. We used ultrasensitive duplex sequencing to profile ~2.5 million mitochondrial genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloguing ~1.2 million mitochondrial somatic and ultralow-frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the light strand origin of replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared with primates with a surfeit of reactive oxygen species-associated G > T/C > A mutations, and that somatic mutations in protein-coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that 're-align' mito-nuclear ancestry within an organism's lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.


Subject(s)
Aging , Genome, Mitochondrial , Haplotypes , Mutation , Selection, Genetic , Animals , Aging/genetics , Mice , DNA, Mitochondrial/genetics , Cell Nucleus/genetics , Female , Mitochondria/genetics , Mice, Inbred C57BL , Male
4.
Nature ; 625(7994): 312-320, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38200293

ABSTRACT

The Holocene (beginning around 12,000 years ago) encompassed some of the most significant changes in human evolution, with far-reaching consequences for the dietary, physical and mental health of present-day populations. Using a dataset of more than 1,600 imputed ancient genomes1, we modelled the selection landscape during the transition from hunting and gathering, to farming and pastoralism across West Eurasia. We identify key selection signals related to metabolism, including that selection at the FADS cluster began earlier than previously reported and that selection near the LCT locus predates the emergence of the lactase persistence allele by thousands of years. We also find strong selection in the HLA region, possibly due to increased exposure to pathogens during the Bronze Age. Using ancient individuals to infer local ancestry tracts in over 400,000 samples from the UK Biobank, we identify widespread differences in the distribution of Mesolithic, Neolithic and Bronze Age ancestries across Eurasia. By calculating ancestry-specific polygenic risk scores, we show that height differences between Northern and Southern Europe are associated with differential Steppe ancestry, rather than selection, and that risk alleles for mood-related phenotypes are enriched for Neolithic farmer ancestry, whereas risk alleles for diabetes and Alzheimer's disease are enriched for Western hunter-gatherer ancestry. Our results indicate that ancient selection and migration were large contributors to the distribution of phenotypic diversity in present-day Europeans.


Subject(s)
Asian , European People , Genome, Human , Selection, Genetic , Humans , Affect , Agriculture/history , Alleles , Alzheimer Disease/genetics , Asia/ethnology , Asian/genetics , Diabetes Mellitus/genetics , Europe/ethnology , European People/genetics , Farmers/history , Genetic Loci/genetics , Genetic Predisposition to Disease , Genome, Human/genetics , History, Ancient , Human Migration , Hunting/history , Multigene Family/genetics , Phenotype , UK Biobank , Multifactorial Inheritance/genetics
5.
J Hered ; 115(2): 203-211, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38092381

ABSTRACT

Townsend's big-eared bat, Corynorhinus townsendii, is a cave- and mine-roosting species found largely in western North America. Considered a species of conservation concern throughout much of its range, protection efforts would greatly benefit from understanding patterns of population structure, genetic diversity, and local adaptation. To facilitate such research, we present the first de novo genome assembly of C. townsendii as part of the California Conservation Genomics Project (CCGP). Pacific Biosciences HiFi long reads and Omni-C chromatin-proximity sequencing technologies were used to produce a de novo genome assembly, consistent with the standard CCGP reference genome protocol. This assembly comprises 391 scaffolds spanning 2.1 Gb, represented by a scaffold N50 of 174.6 Mb, a contig N50 of 23.4 Mb, and a benchmarking universal single-copy ortholog (BUSCO) completeness score of 96.6%. This high-quality genome will be a key tool for informed conservation and management of this vulnerable species in California and across its range.


Subject(s)
Chiroptera , Animals , Chiroptera/genetics , Genome , Genomics/methods , North America
6.
J Hered ; 115(1): 139-148, 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-37712349

ABSTRACT

The Yuma myotis bat (Myotis yumanensis) is a small vespertilionid bat and one of 52 species of new world Myotis bats in the subgenus Pizonyx. While M. yumanensis populations currently appear relatively stable, it is one of 12 bat species known or suspected to be susceptible to white-nose syndrome, the fungal disease causing declines in bat populations across North America. Only two of these 12 species have genome resources available, which limits the ability of resource managers to use genomic techniques to track the responses of bat populations to white-nose syndrome generally. Here we present the first de novo genome assembly for Yuma myotis, generated as a part of the California Conservation Genomics Project. The M. yumanensis genome was generated using a combination of PacBio HiFi long reads and Omni-C chromatin-proximity sequencing technology. This high-quality genome is one of the most complete bat assemblies available, with a contig N50 of 28.03 Mb, scaffold N50 of 99.14 Mb, and BUSCO completeness score of 93.7%. The Yuma myotis genome provides a high-quality resource that will aid in comparative genomic and evolutionary studies, as well as inform conservation management related to white-nose syndrome.


Subject(s)
Chiroptera , Animals , Chiroptera/genetics , North America , Genome , Genomics , Biological Evolution
7.
Trends Genet ; 39(11): 830-843, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37714733

ABSTRACT

Aging is a nearly inescapable trait among organisms yet lifespan varies tremendously across different species and spans several orders of magnitude in vertebrates alone. This vast phenotypic diversity is driven by distinct evolutionary trajectories and tradeoffs that are reflected in patterns of diversification and constraint in organismal genomes. Age-specific impacts of selection also shape allele frequencies in populations, thus impacting disease susceptibility and environment-specific mortality risk. Further, the mutational processes that spawn this genetic diversity in both germline and somatic cells are strongly influenced by age and life history. We discuss recent advances in our understanding of the evolution of aging and lifespan at organismal, population, and cellular scales, and highlight outstanding questions that remain unanswered.

8.
Mol Ecol ; 32(18): 5013-5027, 2023 09.
Article in English | MEDLINE | ID: mdl-37548650

ABSTRACT

Nature has evolved a wealth of sex determination (SD) mechanisms, driven by both genetic and environmental factors. Recent studies of SD in fishes have shown that not all taxa fit the classic paradigm of sex chromosome evolution and diverse SD methods can be found even among closely related species. Here, we apply a suite of genomic approaches to investigate sex-biased genomic variation in eight species of Sebastes rockfish found in the northeast Pacific Ocean. Using recently assembled chromosome-level rockfish genomes, we leverage published sequence data to identify disparate sex chromosomes and sex-biased loci in five species. We identify two putative male sex chromosomes in S. diaconus, a single putative sex chromosome in the sibling species S. carnatus and S. chrysomelas, and an unplaced sex determining contig in the sibling species S. miniatus and S. crocotulus. Our study provides evidence for disparate means of sex determination within a recently diverged set of species and sheds light on the diverse origins of sex determination mechanisms present in the animal kingdom.


Subject(s)
Bass , Perciformes , Animals , Male , Perciformes/genetics , Sex Chromosomes/genetics , Y Chromosome , Genomics/methods , Bass/genetics , Evolution, Molecular
9.
bioRxiv ; 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37461722

ABSTRACT

Elephant seals experience extreme hypoxemia during diving bouts. Similar depletions in oxygen availability characterize pathologies including myocardial infarction and ischemic stroke in humans, but seals manage these repeated episodes without injury. However, the real-time assessment of the molecular changes underlying protection against hypoxic injury in seals remains restricted by their at-sea inaccessibility. Hence, we developed a proliferative arterial endothelial cell culture system to assess the molecular response to prolonged hypoxia. Seal and human cells exposed to 1% O 2 for up to 6 h demonstrated differential responses to both acute and prolonged hypoxia. Seal cells decouple stabilization of the hypoxia-sensitive transcriptional regulator HIF-1α from angiogenic signaling at both the transcriptional and cellular level. Rapid upregulation of genes involved in the glutathione (GSH) metabolism pathway supported maintenance of GSH pools and increases in intracellular succinate in seal but not human cells during hypoxia exposure. High maximal and spare respiratory capacity in seal cells after hypoxia exposure occurred in concert with increasing mitochondrial branch length and independent from major changes in extracellular acidification rate, suggesting seal cells recover oxidative metabolism without significant glycolytic dependency after hypoxia exposure. In sum, our studies show that in contrast to human cells, seal cells adapt to hypoxia exposure by dampening angiogenic signaling, increasing antioxidant protection, and maintaining mitochondrial morphological integrity and function.

10.
Nat Ecol Evol ; 7(8): 1267-1286, 2023 08.
Article in English | MEDLINE | ID: mdl-37308700

ABSTRACT

Elucidating the evolutionary process of animal adaptation to deserts is key to understanding adaptive responses to climate change. Here we generated 82 individual whole genomes of four fox species (genus Vulpes) inhabiting the Sahara Desert at different evolutionary times. We show that adaptation of new colonizing species to a hot arid environment has probably been facilitated by introgression and trans-species polymorphisms shared with older desert resident species, including a putatively adaptive 25 Mb genomic region. Scans for signatures of selection implicated genes affecting temperature perception, non-renal water loss and heat production in the recent adaptation of North African red foxes (Vulpes vulpes), after divergence from Eurasian populations approximately 78 thousand years ago. In the extreme desert specialists, Rueppell's fox (V. rueppellii) and fennec (V. zerda), we identified repeated signatures of selection in genes affecting renal water homeostasis supported by gene expression and physiological differences. Our study provides insights into the mechanisms and genetic underpinnings of a natural experiment of repeated adaptation to extreme conditions.


Subject(s)
Adaptation, Biological , Biological Evolution , Foxes , Animals , Adaptation, Biological/genetics , Africa, Northern , Desert Climate , Foxes/genetics , Genomics , Water , Homeostasis/genetics , Homeostasis/physiology
11.
Nat Methods ; 20(8): 1213-1221, 2023 08.
Article in English | MEDLINE | ID: mdl-37365340

ABSTRACT

Advancements in sequencing technologies and assembly methods enable the regular production of high-quality genome assemblies characterizing complex regions. However, challenges remain in efficiently interpreting variation at various scales, from smaller tandem repeats to megabase rearrangements, across many human genomes. We present a PanGenome Research Tool Kit (PGR-TK) enabling analyses of complex pangenome structural and haplotype variation at multiple scales. We apply the graph decomposition methods in PGR-TK to the class II major histocompatibility complex demonstrating the importance of the human pangenome for analyzing complicated regions. Moreover, we investigate the Y-chromosome genes, DAZ1/DAZ2/DAZ3/DAZ4, of which structural variants have been linked to male infertility, and X-chromosome genes OPN1LW and OPN1MW linked to eye disorders. We further showcase PGR-TK across 395 complex repetitive medically important genes. This highlights the power of PGR-TK to resolve complex variation in regions of the genome that were previously too complex to analyze.


Subject(s)
Genome, Human , Genomics , Male , Humans , Major Histocompatibility Complex
12.
Cell Metab ; 35(6): 996-1008.e7, 2023 06 06.
Article in English | MEDLINE | ID: mdl-37146607

ABSTRACT

Aging results in a decline in neural stem cells (NSCs), neurogenesis, and cognitive function, and evidence is emerging to demonstrate disrupted adult neurogenesis in the hippocampus of patients with several neurodegenerative disorders. Here, single-cell RNA sequencing of the dentate gyrus of young and old mice shows that the mitochondrial protein folding stress is prominent in activated NSCs/neural progenitors (NPCs) among the neurogenic niche, and it increases with aging accompanying dysregulated cell cycle and mitochondrial activity in activated NSCs/NPCs in the dentate gyrus. Increasing mitochondrial protein folding stress results in compromised NSC maintenance and reduced neurogenesis in the dentate gyrus, neural hyperactivity, and impaired cognitive function. Reducing mitochondrial protein folding stress in the dentate gyrus of old mice improves neurogenesis and cognitive function. These results establish the mitochondrial protein folding stress as a driver of NSC aging and suggest approaches to improve aging-associated cognitive decline.


Subject(s)
Hippocampus , Neural Stem Cells , Mice , Animals , Neural Stem Cells/metabolism , Neurogenesis/physiology , Aging/physiology , Unfolded Protein Response , Cell Proliferation
13.
BMC Genomics ; 24(1): 229, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37131128

ABSTRACT

BACKGROUND: Mitochondrial genome sequences have become critical to the study of biodiversity. Genome skimming and other short-read based methods are the most common approaches, but they are not well-suited to scale up to multiplexing hundreds of samples. Here, we report on a new approach to sequence hundreds to thousands of complete mitochondrial genomes in parallel using long-amplicon sequencing. We amplified the mitochondrial genome of 677 specimens in two partially overlapping amplicons and implemented an asymmetric PCR-based indexing approach to multiplex 1,159 long amplicons together on a single PacBio SMRT Sequel II cell. We also tested this method on Oxford Nanopore Technologies (ONT) MinION R9.4 to assess if this method could be applied to other long-read technologies. We implemented several optimizations that make this method significantly more efficient than alternative mitochondrial genome sequencing methods. RESULTS: With the PacBio sequencing data we recovered at least one of the two fragments for 96% of samples (~ 80-90%) with mean coverage ~ 1,500x. The ONT data recovered less than 50% of input fragments likely due to low throughput and the design of the Barcoded Universal Primers which were optimized for PacBio sequencing. We compared a single mitochondrial gene alignment to half and full mitochondrial genomes and found, as expected, increased tree support with longer alignments, though whole mitochondrial genomes were not significantly better than half mitochondrial genomes. CONCLUSIONS: This method can effectively capture thousands of long amplicons in a single run and be used to build more robust phylogenies quickly and effectively. We provide several recommendations for future users depending on the evolutionary scale of their system. A natural extension of this method is to collect multi-locus datasets consisting of mitochondrial genomes and several long nuclear loci at once.


Subject(s)
Genome, Mitochondrial , Nanopore Sequencing , Nanopores , Sequence Analysis, DNA/methods , High-Throughput Nucleotide Sequencing/methods , Biodiversity
14.
bioRxiv ; 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37066137

ABSTRACT

Pangenome graphs can represent all variation between multiple genomes, but existing methods for constructing them are biased due to reference-guided approaches. In response, we have developed PanGenome Graph Builder (PGGB), a reference-free pipeline for constructing unbi-ased pangenome graphs. PGGB uses all-to-all whole-genome alignments and learned graph embeddings to build and iteratively refine a model in which we can identify variation, measure conservation, detect recombination events, and infer phylogenetic relationships.

15.
bioRxiv ; 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-36945529

ABSTRACT

Mitochondrial genomes co-evolve with the nuclear genome over evolutionary timescales and are shaped by selection in the female germline. Here, we investigate how mismatching between nuclear and mitochondrial ancestry impacts the somatic evolution of the mt-genome in different tissues throughout aging. We used ultra-sensitive Duplex Sequencing to profile ~2.5 million mt-genomes across five mitochondrial haplotypes and three tissues in young and aged mice, cataloging ~1.2 million mitochondrial somatic and ultra low frequency inherited mutations, of which 81,097 are unique. We identify haplotype-specific mutational patterns and several mutational hotspots, including at the Light Strand Origin of Replication, which consistently exhibits the highest mutation frequency. We show that rodents exhibit a distinct mitochondrial somatic mutational spectrum compared to primates with a surfeit of reactive oxygen species-associated G>T/C>A mutations, and that somatic mutations in protein coding genes exhibit signatures of negative selection. Lastly, we identify an extensive enrichment in somatic reversion mutations that "re-align" mito-nuclear ancestry within an organism's lifespan. Together, our findings demonstrate that mitochondrial genomes are a dynamically evolving subcellular population shaped by somatic mutation and selection throughout organismal lifetimes.

16.
Cell Rep ; 41(11): 111803, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36516757

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) can be ameliorated by calorie restriction, which leads to the suppressed somatotroph axis. Paradoxically, the suppressed somatotroph axis is associated with patients with NAFLD and is correlated with the severity of fibrosis. How the somatotroph axis becomes dysregulated and whether the repressed somatotroph axis impacts liver damage during the progression of NAFLD are unclear. Here, we identify a regulatory branch of the hepatic integrated stress response (ISR), which represses the somatotroph axis in hepatocytes through ATF3, resulting in enhanced cell survival and reduced cell proliferation. In mouse models of NAFLD, the ISR represses the somatotroph axis, leading to reduced apoptosis and inflammation but decreased hepatocyte proliferation and exacerbated fibrosis in the liver. NAD+ repletion reduces the ISR, rescues the dysregulated somatotroph axis, and alleviates NAFLD. These results establish that the hepatic ISR suppresses the somatotroph axis to control cell fate decisions and liver damage in NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Somatotrophs , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Liver/pathology , Hepatocytes/pathology , Liver Cirrhosis/pathology
17.
Nat Commun ; 13(1): 5803, 2022 10 03.
Article in English | MEDLINE | ID: mdl-36192477

ABSTRACT

Age is the primary risk factor for many common human diseases. Here, we quantify the relative contributions of genetics and aging to gene expression patterns across 27 tissues from 948 humans. We show that the predictive power of expression quantitative trait loci is impacted by age in many tissues. Jointly modelling the contributions of age and genetics to transcript level variation we find expression heritability (h2) is consistent among tissues while the contribution of aging varies by >20-fold with [Formula: see text] in 5 tissues. We find that while the force of purifying selection is stronger on genes expressed early versus late in life (Medawar's hypothesis), several highly proliferative tissues exhibit the opposite pattern. These non-Medawarian tissues exhibit high rates of cancer and age-of-expression-associated somatic mutations. In contrast, genes under genetic control are under relaxed constraint. Together, we demonstrate the distinct roles of aging and genetics on expression phenotypes.


Subject(s)
Aging , Quantitative Trait Loci , Aging/genetics , Gene Expression , Gene Expression Regulation , Humans , Phenotype , Quantitative Trait Loci/genetics
18.
Genome Biol Evol ; 14(7)2022 07 02.
Article in English | MEDLINE | ID: mdl-35679302

ABSTRACT

The variegated toad-headed agama, Phrynocephalus versicolor, lives in the arid landscape of the Chinese Gobi Desert. We analyzed populations from three different locations which vary in substrate color and altitude: Heishankou (HSK), Guazhou County (GZ), and Ejin Banner (EJN). The substrate color is either light-yellow (GZ-y), yellow (EJN-y), or black (HSK-b); the corresponding lizard population colors largely match their substrate in the degree of melanism. We assembled the P. versicolor genome and sequenced over 90 individuals from the three different populations. Genetic divergence between populations corresponds to their geographic distribution. We inferred the genetic relationships among these populations and used selection scans and differential expression to identify genes that show signatures of selection. Slc2a11 and akap12, among other genes, are highly differentiated and may be responsible for pigment adaptation to substrate color in P. versicolor.


Subject(s)
Genome, Mitochondrial , Lizards , Animals , Humans , Lizards/genetics , Metagenomics , RNA, Transfer/genetics , Sand
19.
Genetics ; 221(2)2022 05 31.
Article in English | MEDLINE | ID: mdl-35471663

ABSTRACT

Gametogenesis is an evolutionarily conserved developmental program whereby a diploid progenitor cell undergoes meiosis and cellular remodeling to differentiate into haploid gametes, the precursors for sexual reproduction. Even in the simple eukaryotic organism Saccharomyces cerevisiae, the meiotic transcriptome is very rich and complex, thereby necessitating new tools for functional studies. Here, we report the construction of 5 stage-specific, inducible complementary DNA libraries from meiotic cells that represent over 84% of the genes found in the budding yeast genome. We employed computational strategies to detect endogenous meiotic transcript isoforms as well as library-specific gene truncations. Furthermore, we developed a robust screening pipeline to test the effect of each complementary DNA on competitive fitness. Our multiday proof-of-principle time course revealed 877 complementary DNAs that were detrimental for competitive fitness when overexpressed. The list included mitochondrial proteins that cause dose-dependent disruption of cellular respiration as well as library-specific gene truncations that expose a dominant negative effect on competitive growth. Together, these high-quality complementary DNA libraries provide an important tool for systematically identifying meiotic genes, transcript isoforms, and protein domains that are important for a specific biological function.


Subject(s)
Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA, Complementary , Gene Library , Meiosis/genetics , Mitochondrial Proteins/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
20.
Mol Neurodegener ; 17(1): 5, 2022 01 09.
Article in English | MEDLINE | ID: mdl-35000600

ABSTRACT

BACKGROUND: Cellular senescence is a complex stress response that impacts cellular function and organismal health. Multiple developmental and environmental factors, such as intrinsic cellular cues, radiation, oxidative stress, oncogenes, and protein accumulation, activate genes and pathways that can lead to senescence. Enormous efforts have been made to identify and characterize senescence genes (SnGs) in stress and disease systems. However, the prevalence of senescent cells in healthy human tissues and the global SnG expression signature in different cell types are poorly understood. METHODS: This study performed an integrative gene network analysis of bulk and single-cell RNA-seq data in non-diseased human tissues to investigate SnG co-expression signatures and their cell-type specificity. RESULTS: Through a comprehensive transcriptomic network analysis of 50 human tissues in the Genotype-Tissue Expression Project (GTEx) cohort, we identified SnG-enriched gene modules, characterized SnG co-expression patterns, and constructed aggregated SnG networks across primary tissues of the human body. Our network approaches identified 51 SnGs highly conserved across the human tissues, including CDKN1A (p21)-centered regulators that control cell cycle progression and the senescence-associated secretory phenotype (SASP). The SnG-enriched modules showed remarkable cell-type specificity, especially in fibroblasts, endothelial cells, and immune cells. Further analyses of single-cell RNA-seq and spatial transcriptomic data independently validated the cell-type specific SnG signatures predicted by the network analysis. CONCLUSIONS: This study systematically revealed the co-regulated organizations and cell type specificity of SnGs in major human tissues, which can serve as a blueprint for future studies to map senescent cells and their cellular interactions in human tissues.


Subject(s)
Cellular Senescence , Endothelial Cells , Cellular Senescence/genetics , Fibroblasts/metabolism , Gene Expression Profiling , Humans , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...