Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Mater Res B Appl Biomater ; 106(7): 2519-2523, 2018 10.
Article in English | MEDLINE | ID: mdl-29274252

ABSTRACT

Hafnium (Hf) has attracted considerable attention as a component of biomedical titanium (Ti) alloys with low Young's moduli and/or shape-memory functionalities, because its cytotoxicity is as low as that of Ti. The drawback of metals is that their bone-bonding ability is generally low. It is known that apatite formation in the body is a prerequisite for bone-bonding. Although several chemical treatments have been proposed for preparing Ti for bone-bonding, there have been no similar investigations for Hf. In the present study, NaOH- and heat-treatments were applied to pure Hf and Ti-Hf alloys and their bone-bonding ability was assessed in vitro with the use of simulated body fluid (SBF). After NaOH- and heat-treatments, anatase formed on alloys with low Hf content (20-40% (atom%) Hf); mixtures of sodium titanate and hafnium titanate formed on alloys with similar Ti and Hf content (60% Hf); and hafnium oxide formed on alloys with high Hf content (80% Hf and pure Hf). Precipitates of apatite were observed on all the metals in SBF, except for the alloy with 60% Hf. We speculated that the hafnium titanate formed on this alloy had a low apatite-forming ability owing to its high negative surface charge, which inhibited P adsorption. The apatite-forming abilities of the Ti-Hf alloys strongly depended on their Hf content. The present results indicate that Hf-based materials have good potential for bone-bonding. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2519-2523, 2018.


Subject(s)
Alloys/chemistry , Apatites/chemistry , Coated Materials, Biocompatible/chemistry , Hafnium/chemistry , Titanium/chemistry , Humans , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL