Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Pharmacother ; 127: 110162, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32407986

ABSTRACT

Herein, we present the design, synthesis and trypanocidal evaluation of sixteen new 1,3,4-thiadiazole derivatives from N-aminobenzyl or N-arylhydrazone series. All derivatives were assayed against the trypomastigote form of Trypanosoma cruzi, showing IC50 values ranging from 3 to 226 µM, and a better trypanocidal profile was demonstrated for the 1,3,4-thiadiazole-N-arylhydrazones (3a-g). In this series, the 2-pyridinyl fragment bound to the imine subunit of the hydrazine moiety presented pharmacophoric behavior for trypanocidal activity. Compounds 2a, 11a and 3e presented remarkable activity and excellent selectivity indexes. Compound 2a was also active against the intracellular amastigote form of T. cruzi. Moreover, its corresponding hydrochloride, compound 11a, showed the most promising profile, producing phenotypic changes similar to those caused by posaconazole, a well-known inhibitor of sterol biosynthesis. Thus, 1,3,4-thiadiazole derivative 11a could be considered a good prototype for the development of new drug candidates for Chagas disease therapy.


Subject(s)
Chagas Disease/drug therapy , Thiadiazoles/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/parasitology , Inhibitory Concentration 50 , Mice , Structure-Activity Relationship , Thiadiazoles/chemical synthesis , Thiadiazoles/chemistry , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
2.
World J Biol Chem ; 8(1): 57-80, 2017 Feb 26.
Article in English | MEDLINE | ID: mdl-28289519

ABSTRACT

Almost 110 years after the first studies by Dr. Carlos Chagas describing an infectious disease that was named for him, Chagas disease remains a neglected illness and a death sentence for infected people in poor countries. This short review highlights the enormous need for new studies aimed at the development of novel and more specific drugs to treat chagasic patients. The primary tool for facing this challenge is deep knowledge about the similarities and differences between the parasite and its human host.

3.
PLoS One ; 11(9): e0162926, 2016.
Article in English | MEDLINE | ID: mdl-27658305

ABSTRACT

Curcumin (CUR) is the major constituent of the rhizomes of Curcuma longa and has been widely investigated for its chemotherapeutic properties. The well-known activity of CUR against Leishmania sp., Trypanosoma brucei and Plasmodium falciparum led us to investigate its activity against Trypanosoma cruzi. In this work, we tested the cytotoxic effects of CUR and other natural curcuminoids on different forms of T. cruzi, as well as the ultrastructural changes induced in epimastigote form of the parasite. CUR was verified as the curcuminoid with more significant trypanocidal properties (IC50 10.13 µM on epimastigotes). Demethoxycurcumin (DMC) was equipotent to CUR (IC50 11.07 µM), but bisdemethoxycurcumin (BDMC) was less active (IC50 45.33 µM) and cyclocurcumin (CC) was inactive. In the experiment with infected murine peritoneal macrophages all diarylheptanoids were more active than the control in the inhibition of the trypomastigotes release. The electron microscopy images showed ultrastructural changes associated with the cytoskeleton of the parasite, indicating tubulin as possible target of CUR in T. cruzi. The results obtained by flow cytometry analysis of DNA content of the parasites treated with natural curcuminoids suggested a mechanism of action on microtubules related to the paclitaxel`s mode of action. To better understand the mechanism of action highlighted by electron microscopy and flow cytometry experiments we performed the molecular docking of natural curcuminoids on tubulin of T. cruzi in a homology model and the results obtained showed that the observed interactions are in accordance with the IC50 values found, since there CUR and DMC perform similar interactions at the binding site on tubulin while BDMC do not realize a hydrogen bond with Lys163 residue due to the absence of methoxyl groups. These results indicate that trypanocidal properties of CUR may be related to the cytoskeletal alterations.

SELECTION OF CITATIONS
SEARCH DETAIL
...