Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
Add more filters










Publication year range
1.
J Extracell Biol ; 3(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38405579

ABSTRACT

The 'QuantitatEVs: multiscale analyses, from bulk to single vesicle' workshop aimed to discuss quantitative strategies and harmonized wet and computational approaches toward the comprehensive analysis of extracellular vesicles (EVs) from bulk to single vesicle analyses with a special focus on emerging technologies. The workshop covered the key issues in the quantitative analysis of different EV-associated molecular components and EV biophysical features, which are considered the core of EV-associated biomarker discovery and validation for their clinical translation. The in-person-only workshop was held in Trento, Italy, from January 31st to February 2nd, 2023, and continued in Milan on February 3rd with "Next Generation EVs", a satellite event dedicated to early career researchers (ECR). This report summarizes the main topics and outcomes of the workshop.

2.
Membranes (Basel) ; 13(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38132908

ABSTRACT

Plasma and intracellular membranes are characterized by different lipid compositions that enable proteins to localize to distinct subcellular compartments [...].

3.
J Biochem ; 175(1): 57-67, 2023 Dec 20.
Article in English | MEDLINE | ID: mdl-37812440

ABSTRACT

The Bin-Amphiphysin-Rvs (BAR) domain of endophilin binds to the cell membrane and shapes it into a tubular shape for endocytosis. Endophilin has a Src-homology 3 (SH3) domain at their C-terminal. The SH3 domain interacts with the proline-rich motif (PRM) that is found in proteins such as neural Wiskott-Aldrich syndrome protein (N-WASP). Here, we re-examined the binding sites of the SH3 domain of endophilin in N-WASP by machine learning-based prediction and identified the previously unrecognized binding site. In addition to the well-recognized PRM at the central proline-rich region, we found a PRM in front of the N-terminal WASP homology 1 (WH1) domain of N-WASP (NtPRM) as a binding site of the endophilin SH3 domain. Furthermore, the diameter of the membrane tubules in the presence of NtPRM mutant was narrower and wider than that in the presence of N-WASP and in its absence, respectively. Importantly, the NtPRM of N-WASP was involved in the membrane localization of endophilin A2 in cells. Therefore, the NtPRM contributes to the binding of endophilin to N-WASP in membrane remodeling.


Subject(s)
Adaptor Proteins, Signal Transducing , Carrier Proteins , Carrier Proteins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Binding Sites , src Homology Domains , Transcription Factors/metabolism , Proline/metabolism , Protein Binding
4.
Cells ; 12(11)2023 05 27.
Article in English | MEDLINE | ID: mdl-37296607

ABSTRACT

Changes in the dynamic architecture of podocytes, the glomerular epithelial cells, lead to kidney dysfunction. Previous studies on protein kinase C and casein kinase 2 substrates in neurons 2 (PACSIN2), a known regulator of endocytosis and cytoskeletal organization, reveal a connection between PACSIN2 and kidney pathogenesis. Here, we show that the phosphorylation of PACSIN2 at serine 313 (S313) is increased in the glomeruli of rats with diabetic kidney disease. We found that phosphorylation at S313 is associated with kidney dysfunction and increased free fatty acids rather than with high glucose and diabetes alone. Phosphorylation of PACSIN2 emerged as a dynamic process that fine-tunes cell morphology and cytoskeletal arrangement, in cooperation with the regulator of the actin cytoskeleton, Neural Wiskott-Aldrich syndrome protein (N-WASP). PACSIN2 phosphorylation decreased N-WASP degradation while N-WASP inhibition triggered PACSIN2 phosphorylation at S313. Functionally, pS313-PACSIN2 regulated actin cytoskeleton rearrangement depending on the type of cell injury and the signaling pathways involved. Collectively, this study indicates that N-WASP induces phosphorylation of PACSIN2 at S313, which serves as a mechanism whereby cells regulate active actin-related processes. The dynamic phosphorylation of S313 is needed to regulate cytoskeletal reorganization.


Subject(s)
Caseins , Podocytes , Rats , Animals , Phosphorylation , Caseins/metabolism , Podocytes/metabolism , Serine/metabolism , Neurons/metabolism
5.
Front Mol Biosci ; 10: 1153420, 2023.
Article in English | MEDLINE | ID: mdl-37228585

ABSTRACT

Eukaryotic cells intrinsically change their shape, by changing the composition of their membrane and by restructuring their underlying cytoskeleton. We present here further studies and extensions of a minimal physical model, describing a closed vesicle with mobile curved membrane protein complexes. The cytoskeletal forces describe the protrusive force due to actin polymerization which is recruited to the membrane by the curved protein complexes. We characterize the phase diagrams of this model, as function of the magnitude of the active forces, nearest-neighbor protein interactions and the proteins' spontaneous curvature. It was previously shown that this model can explain the formation of lamellipodia-like flat protrusions, and here we explore the regimes where the model can also give rise to filopodia-like tubular protrusions. We extend the simulation with curved components of both convex and concave species, where we find the formation of complex ruffled clusters, as well as internalized invaginations that resemble the process of endocytosis and macropinocytosis. We alter the force model representing the cytoskeleton to simulate the effects of bundled instead of branched structure, resulting in shapes which resemble filopodia.

6.
Sci Adv ; 9(17): eadf5143, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37126564

ABSTRACT

The higher-order assembly of Bin-amphiphysin-Rvs (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, into lattice on the membrane is essential for the formation of subcellular structures. However, the regulation of their ordered assembly has not been elucidated. Here, we show that the higher ordered assembly of growth-arrested specific 7 (GAS7), an F-BAR domain protein, is regulated by the multivalent scaffold proteins of Wiskott-Aldrich syndrome protein (WASP)/neural WASP, that commonly binds to the BAR domain superfamily proteins, together with WISH, Nck, the activated small guanosine triphosphatase Cdc42, and a membrane-anchored phagocytic receptor. The assembly kinetics by fluorescence resonance energy transfer monitoring indicated that the GAS7 assembly on liposomes started within seconds and was further increased by the presence of these proteins. The regulated GAS7 assembly was abolished by Wiskott-Aldrich syndrome mutations both in vitro and in cellular phagocytosis. Therefore, Cdc42 and the scaffold proteins that commonly bind to the BAR domain superfamily proteins promoted GAS7 assembly.


Subject(s)
Monomeric GTP-Binding Proteins , Wiskott-Aldrich Syndrome Protein , Wiskott-Aldrich Syndrome Protein/metabolism , Monomeric GTP-Binding Proteins/metabolism , Wiskott-Aldrich Syndrome Protein, Neuronal/genetics , Wiskott-Aldrich Syndrome Protein, Neuronal/metabolism , Nerve Tissue Proteins/metabolism , Actins/metabolism
7.
Adv Sci (Weinh) ; 10(7): e2207368, 2023 03.
Article in English | MEDLINE | ID: mdl-36698307

ABSTRACT

The cell migration cycle, well-established in 2D, proceeds with forming new protrusive structures at the cell membrane and subsequent redistribution of contractile machinery. Three-dimensional (3D) environments are complex and composed of 1D fibers, and 1D fibers are shown to recapitulate essential features of 3D migration. However, the establishment of protrusive activity at the cell membrane and contractility in 1D fibrous environments remains partially understood. Here the role of membrane curvature regulator IRSp53 is examined as a coupler between actin filaments and plasma membrane during cell migration on single, suspended 1D fibers. IRSp53 depletion reduced cell-length spanning actin stress fibers that originate from the cell periphery, protrusive activity, and contractility, leading to uncoupling of the nucleus from cellular movements. A theoretical model capable of predicting the observed transition of IRSp53-depleted cells from rapid stick-slip migration to smooth and slower migration due to reduced actin polymerization at the cell edges is developed, which is verified by direct measurements of retrograde actin flow using speckle microscopy. Overall, it is found that IRSp53 mediates actin recruitment at the cellular tips leading to the establishment of cell-length spanning fibers, thus demonstrating a unique role of IRSp53 in controlling cell migration in 3D.


Subject(s)
Actin Cytoskeleton , Actins , Cell Movement , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Membrane/metabolism , Cell Movement/genetics , Cell Nucleus/metabolism , Pseudopodia/genetics , Pseudopodia/metabolism
9.
PLoS One ; 17(7): e0271003, 2022.
Article in English | MEDLINE | ID: mdl-35834519

ABSTRACT

Caveolae are plasma membrane invaginations that play important roles in both endocytosis and membrane tension buffering. Typical caveolae have invaginated structures with a high-density caveolin assembly. Membrane sculpting proteins, including PACSIN2 and EHD2, are involved in caveolar biogenesis. PACSIN2 is an F-BAR domain-containing protein with a membrane sculpting ability that is essential for caveolar shaping. EHD2 is also localized at caveolae and involved in their stability. However, the spatial relationship between PACSIN2, EHD2, and caveolin has not yet been investigated. We observed the single-molecule localizations of PACSIN2 and EHD2 relative to caveolin-1 in three-dimensional space. The single-molecule localizations were grouped by their proximity localizations into the geometric structures of blobs. In caveolin-1 blobs, PACSIN2, EHD2, and caveolin-1 had overlapped spatial localizations. Interestingly, the mean centroid of the PACSIN2 F-BAR domain at the caveolin-1 blobs was closer to the plasma membrane than those of EHD2 and caveolin-1, suggesting that PACSIN2 is involved in connecting caveolae to the plasma membrane. Most of the blobs with volumes typical of caveolae had PACSIN2 and EHD2, in contrast to those with smaller volumes. Therefore, PACSIN2 and EHD2 are apparently localized at typically sized caveolae.


Subject(s)
Caveolae , Caveolin 1 , Adaptor Proteins, Signal Transducing/metabolism , Caveolae/metabolism , Caveolin 1/metabolism , Cell Membrane/metabolism , Endocytosis , Membrane Proteins/metabolism
10.
PLoS Genet ; 18(6): e1010264, 2022 06.
Article in English | MEDLINE | ID: mdl-35771772

ABSTRACT

Autophagy is an indispensable process that degrades cytoplasmic materials to maintain cellular homeostasis. During autophagy, double-membrane autophagosomes surround cytoplasmic materials and either fuse with endosomes (called amphisomes) and then lysosomes, or directly fuse with lysosomes, in both cases generating autolysosomes that degrade their contents by lysosomal hydrolases. However, it remains unclear if there are specific mechanisms and/or conditions which distinguish these alternate routes. Here, we identified PACSIN1 as a novel autophagy regulator. PACSIN1 deletion markedly decreased autophagic activity under basal nutrient-rich conditions but not starvation conditions, and led to amphisome accumulation as demonstrated by electron microscopic and co-localization analysis, indicating inhibition of lysosome fusion. PACSIN1 interacted with SNAP29, an autophagic SNARE, and was required for proper assembly of the STX17 and YKT6 complexes. Moreover, PACSIN1 was required for lysophagy, aggrephagy but not mitophagy, suggesting cargo-specific fusion mechanisms. In C. elegans, deletion of sdpn-1, a homolog of PACSINs, inhibited basal autophagy and impaired clearance of aggregated protein, implying a conserved role of PACSIN1. Taken together, our results demonstrate the amphisome-lysosome fusion process is preferentially regulated in response to nutrient state and stress, and PACSIN1 is a key to specificity during autophagy.


Subject(s)
Caenorhabditis elegans , Macroautophagy , Animals , Autophagosomes/metabolism , Autophagy/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Lysosomes/metabolism , Macroautophagy/genetics , SNARE Proteins/metabolism
11.
Membranes (Basel) ; 12(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35207102

ABSTRACT

Many proteins interact with cell and subcellular membranes [...].

12.
iScience ; 24(9): 102994, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34485872

ABSTRACT

At the initial stage of carcinogenesis, cell competition often occurs between newly emerging transformed cells and the neighboring normal cells, leading to the elimination of transformed cells from the epithelial layer. For instance, when RasV12-transformed cells are surrounded by normal cells, RasV12 cells are apically extruded from the epithelium. However, the underlying mechanisms of this tumor-suppressive process still remain enigmatic. We first show by electron microscopic analysis that characteristic finger-like membrane protrusions are projected from both normal and RasV12 cells at their interface. In addition, FBP17, a member of the F-BAR proteins, accumulates in RasV12 cells, as well as surrounding normal cells, which plays a positive role in the formation of finger-like protrusions and apical elimination of RasV12 cells. Furthermore, cdc42 acts upstream of these processes. These results suggest that the cdc42/FBP17 pathway is a crucial trigger of cell competition, inducing "protrusion to protrusion response" between normal and RasV12-transformed cells.

13.
Mol Biol Cell ; 32(21): br7, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34495704

ABSTRACT

Superresolution microscopy determines the localization of fluorescent proteins with high precision, beyond the diffraction limit of light. Superresolution microscopic techniques include photoactivated localization microscopy (PALM), which can localize a single protein by the stochastic activation of its fluorescence. In the determination of single-molecule localization by PALM, the number of molecules that can be analyzed per image is limited. Thus, many images are required to reconstruct the localization of numerous molecules in the cell. However, most fluorescent proteins lose their fluorescence upon fixation. Here, we combined the amino acid substitutions of two Eos protein derivatives, Skylan-S and mEos4b, which are a green reversibly photoswitchable fluorescent protein (RSFP) and a fixation-resistant green-to-red photoconvertible fluorescent protein, respectively, resulting in the fixation-resistant Skylan-S (frSkylan-S), a green RSFP. The frSkylan-S protein is inactivated by excitation light and reactivated by irradiation with violet light, and retained more fluorescence after aldehyde fixation than Skylan-S. The qualities of the frSkylan-S fusion proteins were sufficiently high in PALM observations, as examined using α-tubulin and clathrin light chain. Furthermore, frSkylan-S can be combined with antibody staining for multicolor imaging. Therefore, frSkylan-S is a green fluorescent protein suitable for PALM imaging under aldehyde-fixation conditions.


Subject(s)
Microscopy, Fluorescence/methods , Single Molecule Imaging/methods , Animals , DNA-Binding Proteins/genetics , Fluorescent Dyes/chemistry , Green Fluorescent Proteins/chemistry , Luminescent Proteins/chemistry , Mice , Nerve Tissue Proteins/genetics , Red Fluorescent Protein
14.
Front Cell Dev Biol ; 9: 635231, 2021.
Article in English | MEDLINE | ID: mdl-34422790

ABSTRACT

Protein localization in cells has been analyzed by fluorescent labeling using indirect immunofluorescence and fluorescent protein tagging. However, the relationships between the localization of different proteins had not been analyzed using artificial intelligence. Here, we applied convolutional networks for the prediction of localization of the cytoskeletal proteins from the localization of the other proteins. Lamellipodia are one of the actin-dependent subcellular structures involved in cell migration and are mainly generated by the Wiskott-Aldrich syndrome protein (WASP)-family verprolin homologous protein 2 (WAVE2) and the membrane remodeling I-BAR domain protein IRSp53. Focal adhesion is another actin-based structure that contains vinculin protein and promotes lamellipodia formation and cell migration. In contrast, microtubules are not directly related to actin filaments. The convolutional network was trained using images of actin filaments paired with WAVE2, IRSp53, vinculin, and microtubules. The generated images of WAVE2, IRSp53, and vinculin were highly similar to their real images. In contrast, the microtubule images generated from actin filament images were inferior without the generation of filamentous structures, suggesting that microscopic images of actin filaments provide more information about actin-related protein localization. Collectively, this study suggests that image translation by the convolutional network can predict the localization of functionally related proteins, and the convolutional network might be used to describe the relationships between the proteins by their localization.

15.
STAR Protoc ; 2(3): 100625, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34223199

ABSTRACT

Extracellular vesicles (EVs) play important roles in extracellular trafficking and signaling. Here, we separate EVs by differential centrifugation. EVs separated by this approach are called large EVs (l-EVs) and small EVs (s-EVs), reflecting particle size, which sediment based on different ultracentrifugation forces. The resulting EVs can be quantified and analyzed using nanoparticle tracking analysis, immunoblotting, and functional assays. This protocol was applied to a suspension cell line with high transfection efficiency adapted to a high-density, serum-free culture. For complete details on the use and execution of this protocol, please refer to Nishimura et al. (2021).


Subject(s)
Extracellular Vesicles/metabolism , Ultracentrifugation/methods , Blotting, Western , Cell Movement , Culture Media, Serum-Free , HEK293 Cells , Humans , Proteins/isolation & purification
16.
Biochem Biophys Res Commun ; 571: 145-151, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34325130

ABSTRACT

Podosomes are actin-rich adhesion structures formed in a variety of cell types, such as monocytic cells or cancer cells, to facilitate attachment to and degradation of the extracellular matrix (ECM). Previous studies showed that dynamin 2, a large GTPase involved in membrane remodeling and actin organization, is required for podosome function. However, precise roles of dynamin 2 at the podosomes remain to be elucidated. In this study, we identified a BAR (Bin-Amphiphysin-Rvs167) domain protein pacsin 2 as a functional partner of dynamin 2 at podosomes. Dynamin 2 and pacsin 2 interact and co-localize to podosomes in Src-transformed NIH 3T3 (NIH-Src) cells. RNAi of either dynamin 2 or pacsin 2 in NIH-Src cells inhibited podosome formation and maturation, suggesting essential and related roles at podosomes. Consistently, RNAi of pacsin 2 prevented dynamin 2 localization to podosomes, and reciprocal RNAi of dynamin 2 prevented pacsin 2 localization to podosomes. Taking these results together, we conclude that dynamin 2 and pacsin 2 co-operatively regulate organization of podosomes in NIH-Src cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Dynamin II/metabolism , Podosomes/metabolism , Animals , Cells, Cultured , Humans , Mice
17.
Trends Cell Biol ; 31(8): 644-655, 2021 08.
Article in English | MEDLINE | ID: mdl-33888395

ABSTRACT

Fes/Cip4 homology Bin/amphiphysin/Rvs (F-BAR) domains, like all BAR domains, are dimeric units that oligomerize and bind membranes. F-BAR domains are generally coupled to additional domains that function in protein binding or have enzymatic activity. Because of their crescent shape and ability to oligomerize, F-BAR domains have been traditionally viewed as membrane-deformation modules. However, multiple independent studies have provided no evidence that certain F-BAR domains are able to tubulate membrane. Instead, a growing body of literature featuring structural, biochemical, biophysical, and microscopy-based studies supports the idea that the F-BAR domain family can be unified only by their ability to form oligomeric assemblies on membranes to provide platforms for molecular assembly.


Subject(s)
Cell Membrane , Cell Membrane/metabolism , Humans , Membranes , Protein Binding
18.
Dev Cell ; 56(6): 842-859.e8, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33756122

ABSTRACT

Extracellular vesicles (EVs) are classified as large EVs (l-EVs, or microvesicles) and small EVs (s-EVs, or exosomes). S-EVs are thought to be generated from endosomes through a process that mainly depends on the ESCRT protein complex, including ALG-2 interacting protein X (ALIX). However, the mechanisms of l-EV generation from the plasma membrane have not been identified. Membrane curvatures are generated by the bin-amphiphysin-rvs (BAR) family proteins, among which the inverse BAR (I-BAR) proteins are involved in filopodial protrusions. Here, we show that the I-BAR proteins, including missing in metastasis (MIM), generate l-EVs by scission of filopodia. Interestingly, MIM-containing l-EV production was promoted by in vivo equivalent external forces and by the suppression of ALIX, suggesting an alternative mechanism of vesicle formation to s-EVs. The MIM-dependent l-EVs contained lysophospholipids and proteins, including IRS4 and Rac1, which stimulated the migration of recipient cells through lamellipodia formation. Thus, these filopodia-dependent l-EVs, which we named as filopodia-derived vesicles (FDVs), modify cellular behavior.


Subject(s)
Calcium-Binding Proteins/metabolism , Cell Cycle Proteins/metabolism , Cell Movement , Endocytosis , Endosomal Sorting Complexes Required for Transport/metabolism , Exosomes/metabolism , Extracellular Vesicles/metabolism , Microfilament Proteins/metabolism , Neoplasm Proteins/metabolism , Pseudopodia/metabolism , Calcium-Binding Proteins/genetics , Cell Cycle Proteins/genetics , Cell Membrane/metabolism , Endosomal Sorting Complexes Required for Transport/genetics , HEK293 Cells , Humans , Microfilament Proteins/genetics , Neoplasm Proteins/genetics
19.
J Cell Sci ; 133(19)2020 10 12.
Article in English | MEDLINE | ID: mdl-32878944

ABSTRACT

The membrane-shaping ability of PACSIN2 (also known as syndapin II), which is mediated by its F-BAR domain, has been shown to be essential for caveolar morphogenesis, presumably through the shaping of the caveolar neck. Caveolar membranes contain abundant cholesterol. However, the role of cholesterol in PACSIN2-mediated membrane deformation remains unclear. Here, we show that the binding of PACSIN2 to the membrane can be negatively regulated by cholesterol. We prepared reconstituted membranes based on the lipid composition of caveolae. The reconstituted membrane with cholesterol had a weaker affinity for the F-BAR domain of PACSIN2 than a membrane without cholesterol. Consistent with this, upon depletion of cholesterol from the plasma membrane, PACSIN2 localized at tubules that had caveolin-1 at their tips, suggesting that cholesterol inhibits membrane tubulation mediated by PACSIN2. The tubules induced by PACSIN2 could be representative of an intermediate of caveolae endocytosis. Consistent with this, the removal of caveolae from the plasma membrane upon cholesterol depletion was diminished in the PACSIN2-deficient cells. These data suggest that PACSIN2-mediated caveolae internalization is dependent on the amount of cholesterol, providing a mechanism for cholesterol-dependent regulation of caveolae.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adaptor Proteins, Signal Transducing , Caveolae , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Caveolae/metabolism , Caveolin 1/genetics , Caveolin 1/metabolism , Cell Membrane/metabolism , Endocytosis
20.
Biochem Soc Trans ; 48(3): 837-851, 2020 06 30.
Article in English | MEDLINE | ID: mdl-32597479

ABSTRACT

Lipid compositions of cells differ according to cell types and intracellular organelles. Phospholipids are major cell membrane lipids and have hydrophilic head groups and hydrophobic fatty acid tails. The cellular lipid membrane without any protein adapts to spherical shapes, and protein binding to the membrane is thought to be required for shaping the membrane for various cellular events. Until recently, modulation of cellular lipid membranes was initially shown to be mediated by proteins recognizing lipid head groups, including the negatively charged ones of phosphatidylserine and phosphoinositides. Recent studies have shown that the abilities of membrane-deforming proteins are also regulated by the composition of fatty acid tails, which cause different degrees of packing defects. The binding of proteins to cellular lipid membranes is affected by the packing defects, presumably through modulation of their interactions with hydrophobic amino acid residues. Therefore, lipid composition can be characterized by both packing defects and charge density. The lipid composition regarding fatty acid tails affects membrane bending via the proteins with amphipathic helices, including those with the ArfGAP1 lipid packing sensor (ALPS) motif and via membrane-deforming proteins with structural folding, including those with the Bin-Amphiphysin-Rvs167 (BAR) domains. This review focuses on how the fatty acid tails, in combination with the head groups of phospholipids, affect protein-mediated membrane deformation.


Subject(s)
Membrane Lipids/chemistry , Membrane Proteins/chemistry , Animals , Cell Membrane/chemistry , Fatty Acids/analysis , Glycerophospholipids/chemistry , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...