Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Methods Mol Biol ; 2613: 13-22, 2023.
Article in English | MEDLINE | ID: mdl-36587067

ABSTRACT

CD1d is a non-classical major histocompatibility complex (MHC) protein, responsible for lipid antigen presentation, which presents lipids to natural killer T (NKT) cells. Various CD1d lipid ligands have been reported, including microbial and endogenous glycolipids/phospholipids. Among them, an α-galactosylceramide (α-GalCer), a representative CD1d ligand, is one of the most potent ligands and its derivatives have been developed. In this chapter, the chemistry of α-GalCer and its derivatives are described with an emphasis on their chemical syntheses and molecular interaction analysis with CD1d are described.


Subject(s)
Galactosylceramides , Glycolipids , Galactosylceramides/chemistry , Ligands , Antigens, CD1d/metabolism , Glycolipids/chemistry , Antigen Presentation
2.
Bioorg Med Chem ; 75: 117045, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36327694

ABSTRACT

Mincle, a C-type lectin receptor (CLR), activates the innate immune system by recognizing certain complex lipid compounds. In this study, we designed and synthesized trehalose disteate (TDS) and dibehenate (TDB), containing a polar-functional group in the middle of fatty acid moieties, based on a model of the Mincle-glycolipids interaction. The modified fatty acids were prepared using hydroxy fatty acids as common intermediates, and conjugated with an appropriate trehalose moiety to synthesize the desired trehalose diesters. TDE derivatives containing the modified fatty acid have different Mincle-mediated signaling activities depending on the position of the functional group and the length of the lipids. The newly developed TDE derivatives exhibit signaling activity comparable or superior to that of TDS or TDB, and the results suggest that Mincle tolerates polar functional groups at a certain position of the lipid chain of TDE. The introduction of the polar functional groups into the lipid moiety of the glycolipids also resulted in improved solubility in polar solvents, which would be advantageous for various analyses and applications.

SELECTION OF CITATIONS
SEARCH DETAIL