Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 40(23): 12880-12894, 2022.
Article in English | MEDLINE | ID: mdl-34637680

ABSTRACT

Alzheimer's disease (AD) is the grievous neurodegenerative disorder. Reportedly, many enzymes are responsible for this disease, in which notably, acetylcholinesterase (AChE) and ß-secretase (BACE1) are largely involved for AD. An experimental study reports that silibinin molecule inhibits both AChE and BACE1 enzymes. Present study aims to understand the dual binding mechanism of silibinin in the active site of AChE and BACE1 from the intermolecular interactions, conformational flexibility, charge density distribution, binding energy and the stability of molecule. To obtain the above information, the molecular docking, molecular dynamics (MD) and QTAIM (quantum theory of atoms in molecules) calculations have been performed. The molecular docking reveals that silibinin molecule is forming strong and weak intermolecular interactions with the catalytic site of both enzymes. The QTAIM analysis for the binding pockets of both complexes shows the charge density distribution of intermolecular interactions. The electrostatic potential map displays the electronegative/positive regions at the interaction zone of silibinin with AChE and BACE1 complexes. The MD simulation confirms that the silibinin molecule is stable in the active site of AChE and BACE1 enzymes. The binding free energies of silibinin with both enzymes are more favorable to have the interactions.Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Molecular Dynamics Simulation , Humans , Molecular Docking Simulation , Silybin , Acetylcholinesterase/chemistry , Amyloid Precursor Protein Secretases/chemistry , Protein Binding , Aspartic Acid Endopeptidases/chemistry , Alzheimer Disease/drug therapy , Catalytic Domain
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 259: 119856, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-33979725

ABSTRACT

The interactions between selected molecules (piperine, tacrine, curcumin and silibinin) and proteins (acetylcholinesterase and bovine serum albumin) were investigated by Fluorescence spectroscopy, molecular docking, molecular dynamics, free energy calculation and non-covalent interaction analysis. These binding characteristics are of huge interest for understanding pharmacokinetic mechanism of the target molecules. The steady-state emission spectrum results showed that presence of static quenching mode for piperine, tacrine, curcumin, silibinin molecules with BSA and AChE complexes separately and this excitation-emission matrix analysis suggest that formation of ground-state complex between piperine, tacrine, curcumin, silibinin drugs and both BSA, AChE protein molecules. And, the binding model from molecular docking analysis of both BSA and AChE with these molecules clearly displayed non-covalent interactions (hydrogen bonding and hydrophobic interactions) which played a significant role in the binding mechanism. Further, the protein-ligand complexes are subjected to molecular dynamics and binding free energy calculation to confirm the stability of the molecule in the active site of BSA and AChE. The NCI (non-covalent interaction) approach supports to visualize the iso-surface of the reduced density gradient of such interactions between protein and ligands.


Subject(s)
Acetylcholinesterase , Serum Albumin, Bovine , Binding Sites , Hydrogen Bonding , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Serum Albumin, Bovine/metabolism , Spectrometry, Fluorescence , Thermodynamics
3.
J Biomol Struct Dyn ; 38(7): 1903-1917, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31099307

ABSTRACT

The most common brain disorder of late life is Alzheimer's disease (AD), which is highly complicating dementia. There are several drug targets which are reported to control the severe level of AD; notably, acetylcholinesterase, ß-Secretase and glycogen synthase kinase enzymes are approached as a good drug targets for AD. Hence, the present study mainly focused to discover newly synthesized molecule (7-propyl-6H-pyrano[3,2-c:5,6-c']dichromene-6,8(7H)-dione) as a potential triplet acting drug for above said enzymes through the analysis of X-ray crystallography, molecular docking, molecular dynamics and quantum chemical calculation. The target drug molecule was crystallized in the monoclinic crystal structure with P21/n space group. The structure was solved by SHELXS and refined by SHELXL. The crystal packing is stabilized by C - H···O type of interactions. Further, the induced fit docking shows that the molecule has high docking score, glide energy, favorable hydrogen bonding and hydrophobic interactions on the protein targets. The molecular dynamics simulation was performed to understand the stability of the molecule in the presence of active site environment. Finally, quantum chemical calculation has been carried out for the molecule in gas phase and for the corresponding molecule lifted from the active site region. The structural comparison between gas phase and active site helps to understand the conformational modification of the molecule in the active site. Communicated by Ramaswamy H. Sarma.


Subject(s)
Alzheimer Disease , Molecular Dynamics Simulation , Alzheimer Disease/drug therapy , Crystallography, X-Ray , Humans , Molecular Docking Simulation , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL