Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 904: 166034, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37595930

ABSTRACT

Organic aerosol (OA) is a dominant component of PM2.5, and accurate knowledge of its sources is critical for identification of cost-effective measures to reduce PM2.5. For accurate source apportionment of OA, we conducted field measurements of organic tracers at three sites (one urban, one suburban, and one forest) in the Tokyo Metropolitan Area and numerical simulations of forward and receptor models. We estimated the source contributions of OA by calculating three receptor models (positive matrix factorization, chemical mass balance, and secondary organic aerosol (SOA)-tracer method) using the ambient concentrations, source profiles, and production yields of OA tracers. Sensitivity simulations of the forward model (chemical transport model) for precursor emissions and SOA formation pathways were conducted. Cross-validation between the receptor and forward models demonstrated that biogenic and anthropogenic SOA were better reproduced by the forward model with updated modules for emissions of biogenic volatile organic compounds (VOC) and for SOA formation from biogenic VOC and intermediate-volatility organic compounds than by the default setup. The source contributions estimated by the forward model generally agreed with those of the receptor models for the major OA sources: mobile sources, biomass combustion, biogenic SOA, and anthropogenic SOA. The contributions of anthropogenic SOA, which are the main focus of this study, were estimated by the forward and receptor models to have been between 9 % and 15 % in summer 2019. The observed percent modern carbon data indicate that the amounts of anthropogenic SOA produced during daytime have substantially declined from 2007 to 2019. This trend is consistent with the decreasing trend of anthropogenic VOC, suggesting that reduction of anthropogenic VOC has been effective in reducing anthropogenic SOA in the atmosphere.

2.
Environ Res ; 219: 115108, 2023 02 15.
Article in English | MEDLINE | ID: mdl-36549488

ABSTRACT

BACKGROUND AND AIM: Short-term associations between air pollution and mortality have been well reported in Japan, but the historical changes in mortality risk remain unknown. We examined temporal changes in the mortality risks associated with short-term exposure to four criteria air pollutants in selected Japanese cities. METHODS: We collected daily mortality data for non-accidental causes (n = 5,748,206), cardiovascular (n = 1,938,743) and respiratory diseases (n = 777,266), and air pollutants (sulfur dioxide [SO2], nitrogen dioxide [NO2], suspended particulate matter [SPM], and oxidants [Ox]) in 10 cities from 1977 to 2015. We performed two-stage analysis with 5-year stratification to estimate the relative risk (RR) of mortality per 10-unit increase in the 2-day moving average of air pollutant concentrations. In the first stage, city-specific associations were assessed using a quasi-Poisson generalized linear regression model. In the second stage, city-specific estimates were pooled using a random-effects meta-analysis. Linear trend and ratio of relative risks (RRR) were computed to examine temporal changes. RESULTS: When stratifying the analysis by every 5 years, average concentrations in each sub-period decreased for SO2, NO2, and SPM (14.2-2.3 ppb, 29.4-17.5 ppb, 52.1-20.6 µg/m3, respectively) but increased for Ox (29.1-39.1 ppb) over the study period. We found evidence of a negative linear trend in the risk of cardiovascular mortality associated with SPM across sub-periods. However, the risks of non-accidental and respiratory mortality per 10-unit increase in SPM concentration were significantly higher in the most recent period than in the earliest period. Other gaseous pollutants did not show such temporal risk change. The risks posed by these pollutants were slightly to moderately heterogeneous in the different cities. CONCLUSIONS: The mortality risks associated with short-term exposure to SPM changed, with different trends by cause of death, in 10 cities over 39 years whereas the risks for other gaseous pollutants were relatively stable.


Subject(s)
Air Pollution , Environmental Exposure , Mortality , Humans , Air Pollutants/toxicity , Air Pollutants/analysis , Air Pollution/adverse effects , Air Pollution/analysis , Cities/epidemiology , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Environmental Pollutants/analysis , Environmental Pollutants/toxicity , Nitrogen Dioxide/toxicity , Nitrogen Dioxide/analysis , Particulate Matter/toxicity , Particulate Matter/analysis , Sulfur Dioxide/toxicity , Sulfur Dioxide/analysis , Japan/epidemiology , Risk Assessment , Mortality/trends
3.
Environ Pollut ; 317: 120802, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36473642

ABSTRACT

Ozone (O3)-induced health effects vary in terms of severity, from deterioration of lung function and hospitalization to death. Several studies have reported a linear increase in health risks after O3 exposure. However, current evidence suggests a non-linear U- and J-shaped concentration-response (C-R) function. The potential increasing risks with decreasing O3 concentrations may seem counterintuitive from the traditional standpoint that decreasing exposure should lead to decreasing health risks. Tus, the question of whether the increasing risks with decreasing concentrations are truly O3-induced or might be from other C-R mechanisms. If these potential risks were not accounted for, this may have contributed to the risks observed at the low ozone concentration range. In this study, we examined the short-term effects of photochemical oxidant (Ox, parts per billiion) on outpatient cardiorespiratory visits in 21 Japanese cities after adjusting for other air pollutant-specific C-R functions. Daily cardiorespiratory visits from January 1, 2014 to December 31, 2016 were obtained from the Japanese Medical Data Center Co. Ltd. Similar period of meteorological and air pollution variables were obtained from relevant data sources. We utilized a time-stratified case crossover design coupled with the generalized additive mixed model (TSCC-GAMM) to estimate the association between Ox and cardiorespiratory outpatient visits, after adjusting for several covariates. A total of 2,588,930 visits were recorded across the study period, with a mean of 111.87 and a standard deviation of 138.75. The results revealed that crude Ox-cardiorespiratory visits exhibited a U-shaped pattern. However, adjustment of the oxides of nitrogen, particularly nitrogen monoxide (NO), attenuated the lower risk curve and subsequently altered the shape of the C-R function, with a substantial reduction observed during winter. NO- and nitrogen dioxide (NO2)-adjusted Ox-cardiorespiratory associations increased nearly linearly, without an apparent threshold. Current evidence suggests the importance of adjusting the oxides of nitrogen in estimating the Ox C-R risk functions.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Humans , Air Pollutants/analysis , Air Pollution/analysis , Nitric Oxide , Nitrogen , Nitrogen Dioxide/analysis , Oxides , Ozone/analysis , Particulate Matter/analysis , Cross-Over Studies
4.
JMA J ; 5(4): 480-490, 2022 Oct 17.
Article in English | MEDLINE | ID: mdl-36407079

ABSTRACT

Introduction: PM2.5 exposure is a suspected risk factor for diabetes. It is hypothesized that maternal PM2.5 exposure contributes to the development of gestational diabetes mellitus (GDM). The association between PM2.5 exposure and GDM is controversial and limited evidence is available for the exposure to PM2.5 chemical components. We investigated the association between maternal exposure to total PM2.5 mass and its components, particularly over the first trimester (early placentation period), and GDM. Methods: Data were obtained from the Japan Perinatal Registry Network database, which includes all live births and stillbirths after 22 weeks of gestation at 39 cooperating hospitals in 23 Tokyo wards (2013-2015). At one fixed monitoring site, we performed daily filter sampling of fine particles and measured daily concentrations of carbon and ion components. The average concentrations of total PM2.5 and its components over the 3 months before pregnancy and the first (0-13 gestational weeks) and second (14-27 gestational weeks) trimesters were calculated and assigned to each woman. We estimated the odds ratios (ORs) of GDM in a multilevel logistic regression model. Results: Among 82,773 women (mean age at delivery = 33.7 years) who delivered singleton births, 3,953 (4.8%) had GDM. In the multiexposure period model, an association between total PM2.5 exposure and GDM was observed for exposure over the first trimester (OR per interquartile range (IQR = 3.63 µg/m3) increase = 1.09; 95% confidence interval (CI) = 1.02-1.16), but not for the 3 months before pregnancy or the second trimester. For PM2.5 components, only organic carbon exposure over the first trimester was positively associated with GDM (OR per IQR (0.51 µg/m3) increase = 1.10; 1.00-1.21). Conclusions: This is the first evidence that exposure to total PM2.5 and one of its components, organic carbon, over the first trimester increases GDM occurrence in Japan.

5.
Environ Sci Technol ; 56(11): 7319-7327, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35608996

ABSTRACT

A limited number of studies have investigated the association between short-term exposure to PM2.5 components and morbidity. The present case-crossover study explored the association between exposure to total PM2.5 and its components and emergency ambulance dispatches, which is one of the indicators of morbidity, in the 23 Tokyo wards. Between 2016 and 2018 (mean mass concentrations of total PM2.5 13.5 µg/m3), we obtained data, from the Tokyo Fire Department, on the daily cases of ambulance dispatches. Fine particles were collected at a fixed monitoring site and were analyzed to estimate the daily mean concentrations of carbons and ions. We analyzed 1038301 cases of health-based all-cause ambulance dispatches by using a conditional logistic regression model. The average concentrations of total PM2.5 over one and the previous day were positively associated with the number of ambulance dispatches. In terms of PM2.5 components, the percentage increase per interquartile range (IQR) increase was 0.8% for elemental carbon (IQR = 0.8 µg/m3; 95% CI = 0.3-1.3%), 0.9% for sulfate (2.1 µg/m3; 0.5-1.4%), and 1.1% for ammonium (1.3 µg/m3; 0.4-1.8%) in the PM2.5-adjusted models. This is the first study to find an association between some specific components in PM2.5 and ambulance dispatches.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollution/analysis , Ambulances , Carbon/analysis , Cross-Over Studies , Environmental Exposure/analysis , Particulate Matter/analysis , Tokyo
6.
Int J Epidemiol ; 51(1): 191-201, 2022 02 18.
Article in English | MEDLINE | ID: mdl-34524459

ABSTRACT

BACKGROUND: Our hypothesis was that exposure to fine particulate matter (PM2.5) is related to abnormal cord insertion, which is categorized as a form of placental implantation abnormality. We investigated the association between exposure to total PM2.5 and its chemical components over the first trimester and abnormal cord insertion, which contributes to the occurrence of adverse birth outcomes. METHODS: From the Japan Perinatal Registry Network database, we used data on 83 708 women who delivered singleton births at 39 cooperating hospitals in 23 Tokyo wards (2013-2015). We collected PM2.5 on a filter and measured daily concentrations of carbon and ion components. Then, we calculated the average concentrations over the first trimester (0-13 weeks of gestation) for each woman. A multilevel logistic-regression model with the hospital as a random effect was used to estimate the odds ratios (ORs) of abnormal cord insertion. RESULTS: Among the 83 708 women (mean age at delivery = 33.7 years), the frequency of abnormal cord insertion was 4.5%, the median concentration [interquartile range (IQR)] of total PM2.5 was 16.1 (3.61) µg/m3 and the OR per IQR for total PM2.5 was 1.14 (95% confidence interval = 1.06-1.23). In the total PM2.5-adjusted models, total carbon, organic carbon, nitrate, ammonium and chloride were positively associated with abnormal insertion. Organic carbon was consistently, and nitrate tended to be, associated with specific types of abnormal insertion (marginal or velamentous cord insertion). CONCLUSIONS: Exposure to total PM2.5 and some of its components over the first trimester increased the likelihood of abnormal cord insertion.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Female , Humans , Maternal Exposure/statistics & numerical data , Particulate Matter/analysis , Particulate Matter/toxicity , Placenta , Pregnancy , Pregnancy Trimester, First , Umbilical Cord/chemistry
7.
J Expo Sci Environ Epidemiol ; 32(1): 135-145, 2022 01.
Article in English | MEDLINE | ID: mdl-33603097

ABSTRACT

BACKGROUND: Maternal exposure to fine particulate matter (PM2.5) was associated with pregnancy complications. However, we still lack comprehensive evidence regarding which specific chemical components of PM2.5 are more harmful for maternal and foetal health. OBJECTIVE: We focused on exposure over the first trimester (0-13 weeks of gestation), which includes the early placentation period, and investigated whether PM2.5 and its components were associated with placenta-mediated pregnancy complications (combined outcome of small for gestational age, preeclampsia, placental abruption, and stillbirth). METHODS: From 2013 to 2015, we obtained information, from the Japan Perinatal Registry Network database, on 83,454 women who delivered singleton infants within 23 Tokyo wards (≈627 km2). Using daily filter sampling of PM2.5 at one monitoring location, we analysed carbon and ion components, and assigned the first trimester average of the respective pollutant concentrations to each woman. RESULTS: The ORs of placenta-mediated pregnancy complications were 1.14 (95% CI = 1.08-1.22) per 0.51 µg/m3 (interquartile range) increase of organic carbon and 1.11 (1.03-1.18) per 0.06 µg/m3 increase of sodium. Organic carbon was also associated with four individual complications. There was no association between ozone and outcome. SIGNIFICANCE: There were specific components of PM2.5 that have adverse effects on maternal and foetal health.


Subject(s)
Air Pollutants , Air Pollution , Ozone , Pregnancy Complications , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/analysis , Air Pollution/statistics & numerical data , Female , Humans , Maternal Exposure/adverse effects , Ozone/analysis , Ozone/toxicity , Particulate Matter/analysis , Particulate Matter/toxicity , Placenta/chemistry , Pregnancy , Pregnancy Complications/chemically induced , Tokyo/epidemiology
8.
J Occup Environ Med ; 63(9): 771-778, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34491964

ABSTRACT

OBJECTIVE: We investigated which trimester of exposure to PM2.5 and its components was associated with birth and placental weight, and the fetoplacental weight ratio. METHODS: The study included 63,990 women who delivered singleton term births within 23 Tokyo wards between 2013 and 2015. Each day, we collected fine particles on a filter, and analyzed their chemical constituents, including carbons and ions. Trimester-specific exposure to each pollutant was estimated based on the average daily concentrations. RESULTS: Over the third trimester, sulfate exposure tended to be inversely associated with birth weight, and decreased placental weight (difference for highest vs lowest quintile groups = -6.7 g, 95% confidence interval = -12.5 to -0.9). For fetoplacental weight ratio, there was no relationship. CONCLUSIONS: Sulfate exposure over the third trimester may reduce birth weight, particularly placental weight.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/adverse effects , Air Pollutants/analysis , Birth Weight , Female , Humans , Japan/epidemiology , Maternal Exposure/adverse effects , Particulate Matter/analysis , Placenta/chemistry , Pregnancy
9.
Sci Total Environ ; 755(Pt 1): 142489, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-33017765

ABSTRACT

Fine particulate matter (PM2.5) is composed of a variety of chemical components, and the dependency of the health effects of total PM2.5 on specific components is still under discussion. We hypothesised that specific PM2.5 components are responsible for the health effects, and investigated the association between PM2.5 components and mortality in 23 Tokyo wards. We obtained mortality data from the Ministry of Health, Labour and Welfare for the period from April 2013 to March 2017. At a monitoring site within the study area, we collected daily samples of PM2.5 on a filter, and determined the daily mean concentrations of total carbon (organic carbon and elemental carbon) and ions such as nitrate and sulphate. A case-crossover design was employed, and a conditional logistic regression model was used to estimate the strength of the association. Over the study period, we identified 280,460 total non-accidental deaths, and the average daily mean concentration of total PM2.5 was 16.0 (standard deviation = 8.9) µg/m3. We observed a positive association of total PM2.5 with total, cardiovascular, and respiratory mortality. After adjustment for total PM2.5 and its components associated with mortality in the single-component models, the percentage increase per interquartile range (2.3 µg/m3) increase in the average total carbon concentration of the case- and previous-day was 2.1% (95% confidence interval = 1.0 to 3.1%) for total mortality. Carbon elements were associated with respiratory but not cardiovascular mortality. Our results suggest that specific components of PM2.5 account for its adverse health effects.


Subject(s)
Air Pollutants , Air Pollution , Air Pollutants/analysis , Air Pollutants/toxicity , Air Pollution/adverse effects , Cross-Over Studies , Environmental Exposure/adverse effects , Particulate Matter/analysis , Particulate Matter/toxicity , Tokyo/epidemiology
10.
Sci Total Environ ; 750: 142183, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33182173

ABSTRACT

To evaluate the transboundary pollution of organic aerosols from Northeast Asia, a highly time-resolved measurement of organic compounds was performed in March 2019 at Oki Island located in Japan, which is a remote site and less affected by local anthropogenic sources. PM2.5, water-soluble organic carbon (WSOC) concentrations, and WSOC fraction in PM2.5 showed high values on March 22-23 (high-WSOC period (HWSOC)) when the air mass passed through the area where many fire spots were detected in Northeast China. Biomass burning tracers showed higher concentration, especially levoglucosan exceeded 1 µg/m3 during the HWSOC than the low-WSOC period (LWSOC). Notably, high time-resolved measurements of biomass burning tracers and back trajectory analysis during HWSOC revealed a difference in the variation of lignin pyrolyzed compounds and anhydrous sugars on 22 and 23 March. The air mass passed to different areas in Northeast China in which fire spots were detected, such as the eastern area on the 22nd and the western area on the 23rd. Almost-organic compounds also showed high concentration and strong correlations with levoglucosan and sulfate during HWSOC. Moreover, low-carbon dicarboxylic acids (e.g., adipic acid) and secondary products from anthropogenic volatile organic compounds (e.g., 2,3-dihydroxy-4-oxopentanoic, phthalic, 5-nitrosalicylic acids), also showed a strong correlation with sulfate ions during the HWSOC and LWSOC, respectively. These higher concentrations and strong correlations with levoglucosan and sulfate during the HWSOC propose that their generation could be enhanced by biomass burning. The ratios of organics (e.g., levoglucosan/mannnosan, pinic/3-methylbutane-1,2,3-tricarboxylic acids) suggest that the high concentrations of PM2.5 and WSOC observed during the HWSOC were caused by aged organic aerosols that originated from the combustion of herbaceous plants transported from Northeast China. Our findings indicate that biomass combustion in Northeast China could significantly affect the chemical compositions and the characterization of organic aerosols in downwind regions of Northeast China.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols/analysis , Air Pollutants/analysis , Biomass , Carbon/analysis , China , Environmental Monitoring , Islands , Japan , Particulate Matter/analysis , Seasons
11.
Sci Total Environ ; 729: 138934, 2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32371210

ABSTRACT

Several studies have noted that the existence of comorbidities lead to an increase in the risk of premature mortality and morbidity. Most of the studies examining the effects of air pollution on comorbidity visits were from Northern American countries, with scarce literature from Asia. This study contributes to existing, yet limited understanding of air pollution-comorbidity by examining the effects of daily air pollutants on outpatient single morbidity and comorbid cardiorespiratory visits in Japan. A total of 1,452,505 outpatient cardiorespiratory visits were recorded among the 21 Japanese cities from 2013 to 2016. Daily outpatient cardiorespiratory visit data were obtained from a health insurance claims database managed by the Japan Medical Data Center Co., Ltd. (JMDC). A time-stratified case crossover analysis coupled with Generalized Additive Mixed Model was used to analyze the association of daily air pollutants (particulate matter 2.5 µm or less in diameter, ozone and nitrogen dioxide) on daily single (respiratory and cardiovascular) and comorbidity health outcomes. We further examined single and cumulative effects for 0-3 and 0-14 lag periods. Ozone, NO2, and PM2.5 were positively associated with cardiorespiratory visits in either shorter or longer lags, with more apparent comorbidity associations with NO2 exposure. A 10-unit increase in NO2, after adjusting for ozone, was associated with a 2.24% (95% CI: 1.34-3.15) and 6.49% (95% CI: 5.00-8.01) increase in comorbidity visit at Lag 0 (of Lag 0-3) and cumulative lag 0-3, respectively. Our results contribute to existing evidence suggesting that short-term and extended exposure to air pollution elicit health risks on cardiovascular, respiratory and comorbid clinic visits. Exposure to NO2, in particular, was associated with increase in the risk of single and comorbidity cardiorespiratory visits. Results can be potentially utilized for both individual health (e.g. risk population health management) and health facility management (e.g. health visit influx determination).


Subject(s)
Air Pollution , Air Pollutants , Asia , Cities , Comorbidity , Humans , Nitrogen Dioxide , North America , Outpatients , Ozone , Particulate Matter , Seasons
12.
Environ Res ; 185: 109448, 2020 06.
Article in English | MEDLINE | ID: mdl-32278156

ABSTRACT

Numerous epidemiological studies have demonstrated that short-term exposure to ambient PM2.5 increases mortality and morbidity. Investigating the association using hourly ambient PM2.5 exposure may provide important insights, as current evidence is limited mostly to daily lag term. This study aimed to investigate the hourly association between ambient PM2.5 concentrations and all-cause emergency ambulance dispatches (EAD) in 11 cities in Japan. We used a time-stratified case-crossover design and examined the hourly lags of ambient PM2.5 up to 24 h (unconditional distributed lags and moving average lags) using a conditional Poisson regression model. A significant increase in all-cause EAD was observed at lag 0 h [relative risk (RR): 1.0037 (95% CI: 1.0000, 1.0074)] and all moving average lags. The highest RR was observed within the first 6 h (at lag 0-5 h) [RR: 1.0091 (95% CI: 1.0068, 1.0114)], with a slight ascending pattern. This was followed by a descending pattern at lags 0-11, 0-17, and 0-23 h, but significant positive RR was observed even at lag 0-23 h, when the lowest RR was observed [RR: 1.0072 (95% CI: 1.0044, 1.0100)]. Though similar pattern was observed among the elderly, a different pattern was observed among the children (gradually ascending pattern). We conclude that all-cause EAD could be triggered by ambient PM2.5 exposure with very short lags.


Subject(s)
Air Pollutants , Air Pollution , Aged , Air Pollutants/analysis , Air Pollution/analysis , Ambulances , Child , China , Cities , Environmental Exposure/analysis , Humans , Japan/epidemiology , Particulate Matter/analysis
13.
Environ Pollut ; 244: 414-422, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30352356

ABSTRACT

Biomass burning (BB), such as, crop field burning during the post-harvest season, emits large amounts of air pollutants (e.g., PM2.5) that severely impact human health. However, it is challenging to evaluate the impact of BB on PM2.5 due to uncertainties in the size and location of sources as well as their temporal and spatial variability. This study focused on the impacts of BB on local pollution as well as the long-range transport of PM2.5 in Northeast Asia resulting from a huge field BB event in Northeast China during the autumn of 2014. Air quality simulations using the Community Multiscale Air Quality (CMAQ) model were conducted in the year 2014 over the horizontal domains covering Northeast Asia, including the Japanese mainland. In the baseline simulation (Base), field BB emissions were derived from Fire INventory from NCAR (FINN) v1.5 for the year 2014. The model reasonably captured the daily mean PM2.5 mass concentrations, however, it underestimated concentrations in autumn around Northeast China where irregular field BB following the harvest occurred frequently. To address the underestimation of emissions from BB sources in China, another simulation with boosted BB sources from cropland area (FINN20_crop) was conducted in addition to the Base simulation. The model performance of FINN20_crop was significantly improved and showed smaller biases and higher indices of agreement between simulated and observed values in comparison to those of Base. To evaluate long-range transport of PM2.5 from BB sources in China towards Japan, CMAQ with brute-force method (CMAQ/BFM)-estimated BB contributions for Base and FINN20_crop cases were compared with Positive Matrix Factorization (PMF)-estimated BB contributions at Noto Peninsula in Japan. The CMAQ/BFM-estimated contributions from FINN20_crop were in greater agreement with the PMF-estimated contributions. The comparison of BB contributions estimated by the two contrasting models also indicated large underestimations in the current BB emission estimates.


Subject(s)
Agriculture/methods , Air Pollutants/analysis , Air Pollution/analysis , Environmental Monitoring/methods , Fires , Particulate Matter/analysis , Asia , Biomass , China , Humans , Japan , Seasons
14.
J Epidemiol ; 29(12): 471-477, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-30369511

ABSTRACT

BACKGROUND: From around 2012, the use of automated equipment for fine particulate matter (PM2.5) measurement with equivalence to a reference method has become popular nationwide in Japan. This enabled us to perform a national health effect assessment employing PM2.5 concentrations based on the standardized measurement method. We evaluated the association between non-accidental mortality and short-term exposure to PM2.5 and coarse particulate matter (PM), with the latter estimated as the difference between suspended particulate matter and PM2.5, for the fiscal years 2012-2014. METHODS: This was a time-stratified case-crossover study in 100 highly-populated Japanese cities. Mortality data was obtained from the Ministry of Health, Labour and Welfare. City-specific estimates of PM-mortality association were calculated by applying a conditional logistic regression analysis, and combined with a random-effects meta-analysis. RESULTS: The respective averages of daily mean concentration were 14.6 µg/m3 for PM2.5 and 6.4 µg/m3 for coarse PM. A 10 µg/m3 increase in PM2.5 concentrations for the average of the day of death and the previous day was associated with an increase of 1.3% (95% confidence interval (CI), 0.9-1.6%) in total non-accidental mortality. For cause-specific mortality, PM2.5 was positively associated with cardiovascular and respiratory mortality. After adjustment for PM2.5, we observed a 1.4% (95% CI, 0.2-2.6%) increase in total mortality with a 10 µg/m3 increase in coarse PM. CONCLUSION: The study revealed that short-term exposure to PM2.5 had adverse effects on total non-accidental, cardiovascular, and respiratory mortality in Japan. Coarse PM exposure also increased the risk of total mortality.


Subject(s)
Air Pollution/adverse effects , Environmental Exposure/adverse effects , Mortality/trends , Particulate Matter/adverse effects , Aged , Air Pollution/statistics & numerical data , Cities , Cross-Over Studies , Environmental Exposure/statistics & numerical data , Female , Humans , Japan/epidemiology , Male , Time Factors
15.
Environ Sci Technol ; 52(15): 8456-8466, 2018 08 07.
Article in English | MEDLINE | ID: mdl-29973047

ABSTRACT

Because emission rates of particulate matter (PM) from stationary combustion sources have been measured without dilution or cooling in Japan, condensable PM has not been included in Japanese emission inventories. In this study, we modified an emission inventory to include condensable PM from stationary combustion sources based on the recent emission surveys using a dilution method. As a result, emission rates of organic aerosol (OA) increased by a factor of 7 over Japan. Stationary combustion sources in the industrial and energy sectors became the largest contributors to OA emissions over Japan in the revised estimates (filterable-plus-condensable PM), while road transport and biomass burning were the dominant OA sources in the previous estimate (filterable PM). These results indicate that condensable PM from large combustion sources makes critical contributions to total PM2.5 emissions. Simulated contributions of condensable PM from combustion sources to atmospheric OA drastically increased around urban and industrial areas, including the Kanto region, where OA concentrations increased by factors of 2.5-6.1. Consideration of condensable PM from stationary combustion sources improved model estimates of OA in winter but caused overestimation of OA concentrations in summer. Contributions of primary and secondary OA should be further evaluated by comparing with organic tracer measurements.


Subject(s)
Air Pollutants , Particulate Matter , Aerosols , Environmental Monitoring , Japan
SELECTION OF CITATIONS
SEARCH DETAIL
...