Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
mBio ; 15(7): e0079524, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38874417

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous human tumor virus that establishes lifelong, persistent infections in B cells. The presence of EBV in cancer cells presents an opportunity to target these cells by reactivating the virus from latency. In this study, we developed a novel approach for EBV reactivation termed clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated EBV reactivation (CMER) strategy. Using modified CRISPR-associated protein 9 (dCas9) fused with VP64, we designed 10 single guide RNAs (sgRNAs) to target and activate the EBV immediate-early gene promoter. In Akata Burkitt lymphoma cells, 9 out of 10 CMER sgRNAs effectively reactivated EBV. Among these, CMER sgRNA-5 triggered robust reactivation across various cell types, including lymphoma, gastric cancer, and nasopharyngeal carcinoma cells. Importantly, the combination of CMER and ganciclovir selectively eliminated EBV-positive cells, regardless of their cell origin. These findings indicate that targeted virus reactivation by CMER, combined with nucleoside analog therapy, holds promise for EBV-associated cancer treatment. IMPORTANCE: This study explores a novel strategy called clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9-mediated Epstein-Barr virus (EBV) reactivation (CMER) to reactivate the Epstein-Barr virus in cancer cells. EBV is associated with various cancers, and reactivating EBV from latency offers a potential therapeutic strategy. We utilized an enzymatically inactive CRISPR-associated protein 9 (dCas9) fused with VP64 and designed 10 single guide RNAs to target the EBV immediate-early gene promoter. Nine of these sgRNAs effectively reactivated EBV in Burkitt lymphoma cells, with CMER sgRNA-5 demonstrating strong reactivation across different cancer cell types. Combining CMER with ganciclovir selectively eliminated EBV-positive cells, showing promise for EBV-associated cancer treatment.


Subject(s)
CRISPR-Cas Systems , Epstein-Barr Virus Infections , Ganciclovir , Herpesvirus 4, Human , Virus Activation , Humans , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/drug effects , Herpesvirus 4, Human/physiology , Virus Activation/drug effects , Virus Activation/genetics , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/genetics , Cell Line, Tumor , Ganciclovir/pharmacology , Virus Latency/genetics , Virus Latency/drug effects , Antiviral Agents/pharmacology , Burkitt Lymphoma/genetics , Burkitt Lymphoma/virology , Clustered Regularly Interspaced Short Palindromic Repeats , CRISPR-Associated Protein 9/genetics
2.
mBio ; 15(2): e0316823, 2024 Feb 14.
Article in English | MEDLINE | ID: mdl-38236021

ABSTRACT

YTH N6-methyladenosine RNA-binding protein F2 (YTHDF2) is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 small ubiquitin-like modifier (SUMO) ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 synergizes with wild-type YTHDF2, but not a SUMOylation-deficient mutant, to limit EBV lytic replication. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3, to restrict EBV replication. These results collectively uncover a unique mechanism whereby YTHDF family proteins control EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.IMPORTANCEm6A RNA modification pathway plays important roles in diverse cellular processes and viral life cycle. Here, we investigated the relationship between PIAS1 and the m6A reader protein YTHDF2, which is involved in regulating RNA stability by binding to m6A-modified RNA. We found that both the N-terminal and C-terminal regions of YTHDF2 interact with PIAS1. We showed that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues. We also demonstrated that PIAS1 enhances the anti-EBV activity of YTHDF2. We further revealed that PIAS1 mediates the SUMOylation of other YTHDF family members, namely, YTHDF1 and YTHDF3, to limit EBV replication. These findings together illuminate an important regulatory mechanism of YTHDF proteins in controlling viral RNA decay and EBV replication through PIAS1-mediated SUMOylation.


Subject(s)
Adenine/analogs & derivatives , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Humans , Herpesvirus 4, Human/physiology , Sumoylation , RNA, Viral/genetics , RNA, Viral/metabolism , Lysine/metabolism , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism , RNA Stability , Small Ubiquitin-Related Modifier Proteins/metabolism , Protein Inhibitors of Activated STAT/genetics , Protein Inhibitors of Activated STAT/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
3.
bioRxiv ; 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37609256

ABSTRACT

YTHDF2 is a member of the YTH protein family that binds to N6-methyladenosine (m6A)-modified RNA, regulating RNA stability and restricting viral replication, including Epstein-Barr virus (EBV). PIAS1 is an E3 SUMO ligase known as an EBV restriction factor, but its role in YTHDF2 SUMOylation remains unclear. In this study, we investigated the functional regulation of YTHDF2 by PIAS1. We found that PIAS1 promotes the SUMOylation of YTHDF2 at three specific lysine residues (K281, K571, and K572). Importantly, PIAS1 enhances the antiviral activity of YTHDF2, and SUMOylation-deficient YTHDF2 shows reduced anti-EBV activity. Mechanistically, YTHDF2 lacking SUMOylation exhibits reduced binding to EBV transcripts, leading to increased viral mRNA stability. Furthermore, PIAS1 mediates SUMOylation of YTHDF2's paralogs, YTHDF1 and YTHDF3. These results collectively uncover a unique mechanism whereby YTHDF2 controls EBV replication through PIAS1-mediated SUMOylation, highlighting the significance of SUMOylation in regulating viral mRNA stability and EBV replication.

4.
mBio ; 12(4): e0170621, 2021 08 31.
Article in English | MEDLINE | ID: mdl-34425696

ABSTRACT

The methylation of RNA at the N6 position of adenosine (m6A) orchestrates multiple biological processes to control development, differentiation, and cell cycle, as well as various aspects of the virus life cycle. How the m6A RNA modification pathway is regulated to finely tune these processes remains poorly understood. Here, we discovered the m6A reader YTHDF2 as a caspase substrate via proteome-wide prediction, followed by in vitro and in vivo validations. We further demonstrated that cleavage-resistant YTHDF2 blocks, while cleavage-mimicking YTHDF2 fragments promote, the replication of a common human oncogenic virus, Epstein-Barr virus (EBV). Intriguingly, our study revealed a feedback regulation between YTHDF2 and caspase-8 via m6A modification of CASP8 mRNA and YTHDF2 cleavage during EBV replication. Further, we discovered that caspases cleave multiple components within the m6A RNA modification pathway to benefit EBV replication. Our study establishes that caspase disarming of the m6A RNA modification machinery fosters EBV replication. IMPORTANCE The discovery of an N6-methyladenosine (m6A) RNA modification pathway has fundamentally altered our understanding of the central dogma of molecular biology. This pathway is controlled by methyltransferases (writers), demethylases (erasers), and specific m6A binding proteins (readers). Emerging studies have linked the m6A RNA modification pathway to the life cycle of various viruses. However, very little is known regarding how this pathway is subverted to benefit viral replication. In this study, we established an unexpected linkage between cellular caspases and the m6A modification pathway, which is critical to drive the reactivation of a common tumor virus, Epstein-Barr virus (EBV).


Subject(s)
Adenosine/metabolism , Caspases/metabolism , Herpesvirus 4, Human/genetics , RNA Processing, Post-Transcriptional , RNA, Messenger/metabolism , Virus Replication/genetics , Adenosine/chemistry , Caspases/genetics , Cell Line , Epstein-Barr Virus Infections , Herpesvirus 4, Human/physiology , Humans , Methylation , Oncogenic Viruses/genetics , Oncogenic Viruses/physiology
5.
Antibiotics (Basel) ; 10(3)2021 Mar 09.
Article in English | MEDLINE | ID: mdl-33803296

ABSTRACT

Biofilm formation is one of the main causes of increased antibiotic resistance in Acinetobacter baumannii infections. Bacteriophages and their derivatives, such as tail proteins with depolymerase activity, have shown considerable potential as antibacterial or antivirulence agents against bacterial infections. Here, we gained insights into the activity of a capsular polysaccharide (CPS) depolymerase, derived from the tailspike protein (TSP) of φAB6 phage, to degrade A. baumannii biofilm in vitro. Recombinant TSP showed enzymatic activity and was able to significantly inhibit biofilm formation and degrade formed biofilms; as low as 0.78 ng, the inhibition zone can still be formed on the bacterial lawn. Additionally, TSP inhibited the colonization of A. baumannii on the surface of Foley catheter sections, indicating that it can be used to prevent the adhesion of A. baumannii to medical device surfaces. Transmission and scanning electron microscopy demonstrated membrane leakage of bacterial cells treated with TSP, resulting in cell death. The therapeutic effect of TSP in zebrafish was also evaluated and the results showed that the survival rate was significantly improved (80%) compared with that of the untreated control group (10%). Altogether, we show that TSP derived from φAB6 is expected to become a new antibiotic against multi-drug resistant A. baumannii and a biocontrol agent that prevents the formation of biofilms on medical devices.

6.
Genome Announc ; 4(1)2016 Feb 25.
Article in English | MEDLINE | ID: mdl-26950331

ABSTRACT

Klebsiella pneumoniae strain IIEMP-3, isolated from Indonesian tempeh, is a vitamin B12-producing strain that exhibited a different genetic profile from pathogenic isolates. Here we report the draft genome sequence of strain IIEMP-3, which may provide insights on the nature of fermentation, nutrition, and immunological function of Indonesian tempeh.

SELECTION OF CITATIONS
SEARCH DETAIL