Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Chem Sci ; 14(33): 8792-8797, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37621432

ABSTRACT

Radical-type mechanophores (RMs) are attractive molecules that undergo homolytic scission of their central C-C bond to afford radical species upon exposure to heat or mechanical stimuli. However, the lack of a rational design concept limits the development of RMs with pre-determined properties. Herein, we report a rational design strategy of RMs with high thermal tolerance while maintaining mechanoresponsiveness. A combined experimental and theoretical analysis revealed that the high thermal tolerance of these RMs is related to the radical-stabilization energy (RSE) as well as the Hammett and modified Swain-Lupton constants at the para-position (σp). The trend of the RSE values is in good agreement with the experimentally evaluated thermal tolerance of a series of mechanoresponsive RMs based on the bisarylcyanoacetate motif. Furthermore, the singly occupied molecular orbital (SOMO) levels clearly exhibit a negative correlation with σp within a series of RMs that are based on the same skeleton, paving the way toward the development of RMs that can be handled under ambient conditions without peroxidation.

2.
Chemistry ; 29(47): e202301242, 2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37302983

ABSTRACT

Intramolecular catalyst transfer on benzoheterodiazoles was investigated in Suzuki-Miyaura coupling reactions and polymerization reactions with t Bu3 PPd precatalyst. In the coupling reactions of dibromobenzotriazole, dibromobenzoxazole, and dibromobenzothiadiazole with pinacol phenylboronate, the product ratios of monosubstituted product to disubstituted product were 0/100, 27/73, and 89/11, respectively, indicating that the Pd catalyst undergoes intramolecular catalyst transfer on dibromobenzotriazole, whereas intermolecular transfer occurs in part in the case of dibromobenzoxazole and is predominant for dibromobenzothiadiazole. The polycondensation of 1.3 equivalents of dibromobenzotriazole with 1.0 equivalent of para- and meta-phenylenediboronates afforded high-molecular-weight polymer and cyclic polymer, respectively. In the case of dibromobenzoxazole, however, para- and meta-phenylenediboronates afforded moderate-molecular-weight polymer with bromine at both ends and cyclic polymer, respectively. In the case of dibromobenzothiadiazole, they afforded low-molecular-weight polymers with bromine at both ends. Addition of benzothiadiazole derivatives interfered with catalyst transfer in the coupling reactions.

3.
Chemistry ; 29(12): e202300230, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36750889

ABSTRACT

Invited for the cover of this issue are the groups of Hideyuki Otsuka at the Tokyo Institute of Technology and Koichiro Mikami at the Sagami Chemical Research Institute. The image depicts theoretical and experimental investigations of stable arylfluorene-based radical-type mechanophores. Read the full text of the article at 10.1002/chem.202203249.

4.
Chemistry ; 29(12): e202203249, 2023 Feb 24.
Article in English | MEDLINE | ID: mdl-36575130

ABSTRACT

Radical-type mechanophores (RMs) can undergo homolytic cleavage of their central C-C bonds upon exposure to mechanical forces, which affords radical species. Understanding the characteristics of these radical species allows bespoke mechanoresponsive materials to be designed and developed. The thermal stability of the central C-C bonds and the oxygen tolerance of the generated radical species are crucial characteristics that determine the functions and applicability of such RM-containing mechanoresponsive materials. In this paper, we report the synthesis and characterization of two series of arylfluorene-based RM derivatives, that is, 9,9'-bis(5-methyl-2-pyridyl)-9,9'-bifluorene (BPyF) and 9,9'-bis(4,6-diphenyl-2-triazyl)-9,9'-bifluorene (BTAF). BPyF and BTAF derivatives were synthesized without generating any peroxides initially, albeit that BPyF slowly converted to the corresponding peroxide in solution. DFT calculations revealed the importance of the thermodynamic stability and the values of the α-SOMO levels of the corresponding radical species for their thermal stability and oxygen tolerance. Furthermore, the mechanochromism of BTAF was demonstrated by ball-milling a BTAF-centered polymer, which was synthesized by atom-transfer radical polymerization (ATRP).

5.
J Am Chem Soc ; 143(42): 17744-17750, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34610739

ABSTRACT

The exploration of mechanochemical reactions has brought new opportunities for the design of functional materials. We synthesized the novel organic peroxide mechanophore bis(9-methylphenyl-9-fluorenyl) peroxide (BMPF) and examined its mechanochromic properties. The mechanism behind its mechanofluorescence was clarified and harnessed in polymer networks that can release the small fluorescent molecule 9-fluorenone upon exposure to a mechanical stimulus. Additionally, polymer networks cross-linked with BMPF units are able to tolerate temperatures up to 110 °C without any change in optical properties or mechanical strength. As mechanophores based on organic peroxide have rarely been documented so far, these fascinating results suggest excellent potential for applications of BMPF in stress-responsive materials. The mechanochemical protocol demonstrated here may provide guiding principles to expand the field of mechanochromic peroxides.

6.
Chem Commun (Camb) ; 57(23): 2899-2902, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33616134

ABSTRACT

A non-symmetric radical-type mechanophore (CF/ABF) was synthesized by molecular crossing between two radical-type mechanophores. The thermal stability and mechanoresponsiveness of CF/ABF were found to be tunable by altering the properties of the parent RMs. The CF/ABF-centred polymers showed mixed mechanochromism derived from the simultaneous generation of two radical species.

7.
Angew Chem Int Ed Engl ; 60(15): 8406-8409, 2021 Apr 06.
Article in English | MEDLINE | ID: mdl-33417288

ABSTRACT

Mechanochromic elastomers that exhibit force-induced cross-linking reactions in the bulk state are introduced. The synthesis of segmented polyurethanes (SPUs) that contain difluorenylsuccinonitrile (DFSN) moieties in the main chain and methacryloyl groups in the side chains was carried out. DFSN was selected as the mechanophore because it dissociates under mechanical stimuli to form pink cyanofluorene (CF) radicals, which can also initiate the radical polymerization of methacrylate monomers. The obtained elastomers generated CF radicals and changed color by compression or extension; they also became insoluble due to the mechanically induced cross-linking reactions. Additionally, an SPU containing diphenylmethane units also exhibited highly sensitive mechanofluorescence. To the best of our knowledge, this is the first report to demonstrate damage detection ability and changes in the mechanical properties of bulk elastomers induced by simple compression or extension.

8.
Chemistry ; 25(43): 10059-10062, 2019 Aug 01.
Article in English | MEDLINE | ID: mdl-31206916

ABSTRACT

Suzuki-Miyaura coupling reaction of BrC6 H4 -X-C6 H4 Br 1 (X=CH2 , CO, N-Bu, O, S, SO, and SO2 ) with arylboronic acid 2 was investigated in the presence of tBu3 PPd precatalyst and CsF/[18]crown-6 as a base to establish whether or not the Pd catalyst can undergo catalyst transfer on these functional groups. In the reaction of 1 (X=CH2 , CO, N-Bu, O, and SO2 ) with 2, aryl-disubstituted product 3 (Ar-C6 H4 -X-C6 H4 -Ar) was exclusively obtained, indicating that the Pd catalyst undergoes catalyst transfer on these functional groups. On the other hand, the reaction of 1 e (X=S) and 1 f (X=SO) with 2 afforded only aryl-monosubstituted product 4 (Ar-C6 H4 -X-C6 H4 -Br) and a mixture of 3 and 4, respectively, indicating that S and SO interfere with intramolecular catalyst transfer. Furthermore, we found that Suzuki-Miyaura polycondensation of 1 (X=CH2 , CO, N-Bu, O, and SO2 ) and phenylenediboronic acid 5 in the presence of tBu3 PPd precatalyst afforded high-molecular-weight polymer even when excess 1 was used. The polymers obtained from 1 (X=CH2 , N-Bu, and O) and 5 turned out to be cyclic.

9.
Environ Sci Pollut Res Int ; 25(16): 15680-15691, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29574644

ABSTRACT

The stability and dispersion of naturally occurring As have been receiving increasing attention, because As is toxic and its contamination is a widespread problem in many countries. This study investigated As fractionation and speciation in organic sediments collected from different depositional settings to elucidate the existence of stable As in humic substances. Eleven organic sediment samples were collected from marine and terrestrial alluvial regions in Hokkaido prefecture, Japan, and the chemical fraction of As and species of humic substances were identified by sequential extraction. In addition, stable As bound in organic matter was evaluated by FT-IR spectroscopy. The As fraction mainly comprised inorganic substances, especially sulfur, iron, and manganese, and terrestrial sediments (lacustrine and inland deposits) were rich in sulfides and Fe and Al (hydr)oxides. When the residual fraction was excluded, the organic fraction of As was higher in seawater sediments than in terrestrial sediments. Among humic substances, cellulose, humic acid, and hydrophilic fulvic acid were clearly associated with As accumulation, and As speciation showed that the As was of organic origin. Cellulose, an organic compound of plant origin, was abundant in As=S and As (III)=O bonds, and As accumulation was higher in sulfur-rich peat sediments, corresponding with the physiological activities of As in plants. Hydrophilic fulvic acid and humic acid in these sediments, originating from small animals and microorganisms in addition to plants, denote higher As contents and abound in As (III, V)=C and C-H, CH3 bonds even in sulfur-rich sediments. The methylated As bonds reflect the ecological transition of organisms.


Subject(s)
Arsenic/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Humic Substances , Water Pollutants, Chemical/analysis , Japan , Spectroscopy, Fourier Transform Infrared
10.
Chem Commun (Camb) ; 53(2): 396-399, 2016 12 22.
Article in English | MEDLINE | ID: mdl-27958605

ABSTRACT

The Suzuki-Miyaura coupling polymerization of p-dibromophenylene and m-phenylenediboronic acid ester, as well as m-dibromophenylene and p-phenylenediboronic acid ester, and the combination of two meta-phenylene monomers in the presence of the t-Bu3PPd(0) catalyst selectively afforded cyclic polyphenylenes with polyphenylene bearing boronate moieties at both ends when excess dibromophenylene was used.

11.
J Hazard Mater ; 184(1-3): 58-64, 2010 Dec 15.
Article in English | MEDLINE | ID: mdl-20864256

ABSTRACT

The leaching behavior of cathode ray tube (CRT) funnel glass containing 23 mass percent of Pb in 0.001 N HCl, distilled water, and 0.001 N NaOH at 90°C was investigated using a static method. The weight loss and leached amount of each component was measured and surface changes observed by SEM. The leaching mechanism is discussed. In acid solution, the leached amount of Pb showed t(1/2) dependence, that is, diffusion-controlled dependence, which is common in lead silicate glasses. In water and basic solutions, the leached amount showed saturation after higher initial dissolution than in acid and the deposition of many particles on the surface was observed. The amount leached was less for Pb than other components. The deposited particles formed a protective layer, which suppressed the dissolution of the glass. This dense layer must be formed as a result of a high initial dissolution rate.


Subject(s)
Glass , Electrodes , Lead/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...