Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Technol Adv Mater ; 25(1): 2388501, 2024.
Article in English | MEDLINE | ID: mdl-39156881

ABSTRACT

In a deep-learning-based algorithm, generative adversarial networks can generate images similar to an input. Using this algorithm, an artificial three-dimensional (3D) microstructure can be reproduced from two-dimensional images. Although the generated 3D microstructure has a similar appearance, its reproducibility should be examined for practical applications. This study used an automated serial sectioning technique to compare the 3D microstructures of two dual-phase steels generated from three orthogonal surface images with their corresponding observed 3D microstructures. The mechanical behaviors were examined using the finite element analysis method for the representative volume element, in which finite element models of microstructures were directly constructed from the 3D voxel data using a voxel coarsening approach. The macroscopic material responses of the generated microstructures captured the anisotropy caused by the microscopic morphology. However, these responses did not quantitatively align with those of the observed microstructures owing to inaccuracies in reproducing the volume fraction of the ferrite/martensite phase. Additionally, the generation algorithm struggled to replicate the microscopic morphology, particularly in cases with a low volume fraction of the martensite phase where the martensite connectivity was not discernible from the input images. The results demonstrate the limitations of the generation algorithm and the necessity for 3D observations.


This study provided the comparison between experimentally observed and computationally generated 3D microstructures of dual-phase steels in the macro- and microscopic material behaviors with finite element analysis method for periodic microstructure.

2.
Materials (Basel) ; 17(14)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39063694

ABSTRACT

We performed a machine learning-aided analysis of the rolling and recrystallization textures in pure iron with different cold reduction ratios and cold-rolling directions. Five types of specimens with different cold reduction ratios and cold-rolling directions were prepared. The effect of two-way cold-rolling on the rolling texture was small at cold reduction ratios different from 60%. The cold reduction ratio in each stage hardly affected the texture evolution during cold-rolling and subsequent short-term annealing. In the case of long-term annealing, although abnormal grain growth occurred, the crystal orientation of the grains varied. Moreover, the direction of cold-rolling in each stage also hardly affected the texture evolution during cold-rolling and subsequent short-term annealing. During long-term annealing, sheets with the same cold-rolling direction in the as-received state and in the first stage showed the texture evolution of conventional one-way cold-rolled pure iron. Additionally, we conducted a machine learning-aided analysis of rolling and recrystallization textures. Using cold-rolling and annealing conditions as the input data and the degree of Goss orientation development as the output data, we constructed high-accuracy regression models using artificial neural networks and XGBoost. We also revealed that the annealing temperature is the dominant factor in the nucleation of Goss grains.

3.
J Imaging ; 9(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37233310

ABSTRACT

A modified SliceGAN architecture was proposed to generate a high-quality synthetic three-dimensional (3D) microstructure image of TYPE 316L material manufactured through additive methods. The quality of the resulting 3D image was evaluated using an auto-correlation function, and it was discovered that maintaining a high resolution while doubling the training image size was crucial in creating a more realistic synthetic 3D image. To meet this requirement, modified 3D image generator and critic architecture was developed within the SliceGAN framework.

SELECTION OF CITATIONS
SEARCH DETAIL