Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
PLOS Digit Health ; 3(5): e0000497, 2024 May.
Article in English | MEDLINE | ID: mdl-38701055

ABSTRACT

As we learned during the COVID-19 pandemic, vaccines are one of the most important tools in infectious disease control. To date, an unprecedentedly large volume of high-quality data on COVID-19 vaccinations have been accumulated. For preparedness in future pandemics beyond COVID-19, these valuable datasets should be analyzed to best shape an effective vaccination strategy. We are collecting longitudinal data from a community-based cohort in Fukushima, Japan, that consists of 2,407 individuals who underwent serum sampling two or three times after a two-dose vaccination with either BNT162b2 or mRNA-1273. Using the individually reconstructed time courses of the vaccine-elicited antibody response based on mathematical modeling, we first identified basic demographic and health information that contributed to the main features of the antibody dynamics, i.e., the peak, the duration, and the area under the curve. We showed that these three features of antibody dynamics were partially explained by underlying medical conditions, adverse reactions to vaccinations, and medications, consistent with the findings of previous studies. We then applied to these factors a recently proposed computational method to optimally fit an "antibody score", which resulted in an integer-based score that can be used as a basis for identifying individuals with higher or lower antibody titers from basic demographic and health information. The score can be easily calculated by individuals themselves or by medical practitioners. Although the sensitivity of this score is currently not very high, in the future, as more data become available, it has the potential to identify vulnerable populations and encourage them to get booster vaccinations. Our mathematical model can be extended to any kind of vaccination and therefore can form a basis for policy decisions regarding the distribution of booster vaccines to strengthen immunity in future pandemics.

2.
Front Immunol ; 14: 1240425, 2023.
Article in English | MEDLINE | ID: mdl-37662950

ABSTRACT

The bivalent mRNA vaccine is recommended to address coronavirus disease variants, with additional doses suggested for high-risk groups. However, the effectiveness, optimal frequency, and number of doses remain uncertain. In this study, we examined the long-term cellular and humoral immune responses following the fifth administration of the mRNA severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine in patients undergoing hemodialysis. To our knowledge, this is the first study to monitor long-term data on humoral and cellular immunity dynamics in high-risk populations after five doses of mRNA vaccination, including the bivalent mRNA vaccine. Whereas most patients maintained humoral immunity throughout the observation period, we observed reduced cellular immune reactivity as measured by the ancestral-strain-stimulated ELISpot assay in a subset of patients. Half of the individuals (50%; 14/28) maintained cellular immunity three months after the fifth dose, despite acquiring humoral immunity. The absence of a relationship between positive controls and T-Spot reactivity suggests that these immune alterations were specific to SARS-CoV-2. In multivariable analysis, participants aged ≥70 years showed a marginally significant lower likelihood of having reactive results. Notably, among the 14 individuals who received heterologous vaccines, 13 successfully acquired cellular immunity, supporting the effectiveness of this administration strategy. These findings provide valuable insights for future vaccination strategies in vulnerable populations. However, further research is needed to evaluate the involvement of immune tolerance and exhaustion through repeated vaccination to optimize immunization strategies.


Subject(s)
COVID-19 , RNA, Viral , Humans , Cohort Studies , Japan , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Immunity, Cellular
3.
Vaccines (Basel) ; 11(5)2023 Apr 29.
Article in English | MEDLINE | ID: mdl-37243024

ABSTRACT

Booster vaccination reduces the incidence of severe cases and mortality related to COVID-19, with cellular immunity playing an important role. However, little is known about the proportion of the population that has achieved cellular immunity after booster vaccination. Thus, we conducted a Fukushima cohort database and assessed humoral and cellular immunity in 2526 residents and healthcare workers in Fukushima Prefecture in Japan through continuous blood collection every 3 months from September 2021. We identified the proportion of people with induced cellular immunity after booster vaccination using the T-SPOT.COVID test, and analyzed their background characteristics. Among 1089 participants, 64.3% (700/1089) had reactive cellular immunity after booster vaccination. Multivariable analysis revealed the following independent predictors of reactive cellular immunity: age < 40 years (adjusted odds ratio: 1.81; 95% confidence interval: 1.19-2.75; p-value: 0.005) and adverse reactions after vaccination (1.92, 1.19-3.09, 0.007). Notably, despite IgG(S) and neutralizing antibody titers of ≥500 AU/mL, 33.9% (349/1031) and 33.5% (341/1017) of participants, respectively, did not have reactive cellular immunity. In summary, this is the first study to evaluate cellular immunity at the population level after booster vaccination using the T-SPOT.COVID test, albeit with several limitations. Future studies will need to evaluate previously infected subjects and their T-cell subsets.

4.
Vaccines (Basel) ; 11(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36851137

ABSTRACT

Intensive vaccination is recommended for populations more vulnerable to COVID-19 infection, although data regarding the built of immunity after vaccination for dialysis patients are lacking. This prospective, observational cohort study of maintenance hemodialysis patients examined IgG antibody levels against the SARS-CoV-2 spike (S1) protein, neutralizing activity, and interferon gamma levels after the third dose of the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine. Humoral immunity was repeatedly measured for up to two months. The study includes 58 patients on hemodialysis. Median neutralizing antibodies reached a maximum at 56 and 9 days after booster vaccination with BNT162b2 and mRNA-1273, respectively. The median IgG antibody titer reached a maximum of 3104.38 and 7209.13 AU/mL after 16 days of booster dose, and cellular immunity was positive in 61.9% and 100% of patients with BNT162b2 and mRNA-1273 vaccination, respectively. By repeating the measurements over a period of two months, we clarified the chronological aspects of the acquisition of humoral immunity in dialysis patients after a booster COVID-19 vaccination; most dialysis patients acquired not only humoral immunity, but also cellular immunity against SARS-CoV-2. Future research should investigate the continued long-term dynamics of antibody titers and cellular immunity after the third or further vaccinations, evaluating the need for additional vaccinations for hemodialysis patients.

5.
Cancer Sci ; 114(1): 321-338, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36136061

ABSTRACT

Important roles of humoral tumor immunity are often pointed out; however, precise profiles of dominant antigens and developmental mechanisms remain elusive. We systematically investigated the humoral antigens of dominant intratumor immunoglobulin clones found in human cancers. We found that approximately half of the corresponding antigens were restricted to strongly and densely negatively charged polymers, resulting in simultaneous reactivities of the antibodies to both densely sulfated glycosaminoglycans (dsGAGs) and nucleic acids (NAs). These anti-dsGAG/NA antibodies matured and expanded via intratumoral immunological driving force of innate immunity via NAs. These human cancer-derived antibodies exhibited acidic pH-selective affinity across both antigens and showed specific reactivity to diverse spectrums of human tumor cells. The antibody-drug conjugate exerted therapeutic effects against multiple cancers in vivo by targeting cell surface dsGAG antigens. This study reveals that intratumoral immunological reactions propagate tumor-oriented immunoglobulin clones and demonstrates a new therapeutic modality for the universal treatment of human malignancies.


Subject(s)
Neoplasms , Nucleic Acids , Humans , Epitopes , Antigens , Neoplasms/therapy , Antibodies , Antigens, Surface , Hydrogen-Ion Concentration
6.
Sci Rep ; 12(1): 18929, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344597

ABSTRACT

To reveal waning humoral immunity after second dose BNT162b2 vaccinations in a rural Japanese community and determine factors affecting antibody titers. We aimed to report Immunoglobulin G (IgG) antibody against the SARS-CoV-2 spike (S1) protein levels and neutralizing activity in a large scale community based cohort. METHODS: Participants in the observational cross-sectional study received a second dose of vaccination with BNT162b2 (Pfizer/BioNTech) and were not previously infected with COVID-19. Questionnaire-collected data on sex, age, adverse vaccine reactions, and medical history was obtained. RESULTS: Data from 2496 participants revealed that older age groups reached a low antibody titer 90-120 days after the second vaccination. Neutralizing activity decreased with age; 35 (13.3%) of those aged ≥ 80 years had neutralizing activity under the cut-off value. Neutralizing activity > 179 days from the second vaccination was 11.6% compared to that at < 60 days from the second vaccination. Significantly lower IgG antibody titers and neutralizing activity were associated with age, male sex, increased time from second vaccination, smoking, steroids, immunosuppression, and comorbidities. CONCLUSIONS: Antibody titer decreased substantially over time. Susceptible populations, older people, men, smokers, steroid users, immunosuppression users, and people with three or more comorbidities may require a special protection strategy.


Subject(s)
COVID-19 , Vaccines , Male , Humans , Aged , Immunity, Humoral , Cross-Sectional Studies , BNT162 Vaccine , Antibodies, Viral , Japan , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Surveys and Questionnaires , Antibodies, Neutralizing
7.
Front Cell Dev Biol ; 10: 949013, 2022.
Article in English | MEDLINE | ID: mdl-36111337

ABSTRACT

Fetal nuchal edema, a subcutaneous accumulation of extracellular fluid in the fetal neck, is detected as increased nuchal translucency (NT) by ultrasonography in the first trimester of pregnancy. It has been demonstrated that increased NT is associated with chromosomal anomalies and genetic syndromes accompanied with fetal malformations such as defective lymphatic vascular development, cardiac anomalies, anemia, and a wide range of other fetal anomalies. However, in many clinical cases of increased NT, causative genes, pathogenesis and prognosis have not been elucidated in humans. On the other hand, a large number of gene mutations have been reported to induce fetal nuchal edema in mouse models. Here, we review the relationship between the gene mutants causing fetal nuchal edema with defective lymphatic vascular development, cardiac anomalies, anemia and blood vascular endothelial barrier anomalies in mice. Moreover, we discuss how studies using gene mutant mouse models will be useful in developing diagnostic method and predicting prognosis.

8.
Cancer Sci ; 113(12): 4350-4362, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36121618

ABSTRACT

Antibody-mimetic drug conjugate is a novel noncovalent conjugate consisting of an antibody-mimetic recognizing a target molecule on the cancer cell surface and low-molecular-weight payloads that kill the cancer cells. In this study, the efficacy of a photo-activating antibody-mimetic drug conjugate targeting HER2-expressing tumors was evaluated in mice, by using the affibody that recognize HER2 (ZHER2:342 ) as a target molecule and an axially substituted silicon phthalocyanine (a novel potent photo-activating compound) as a payload. The first treatment with the photo-activating antibody-mimetic drug conjugates reduced the size of all HER2-expressing KPL-4 xenograft tumors macroscopically. However, during the observation period, relapsed tumors gradually appeared in approximately 50% of the animals. To evaluate the efficacy of repeated antibody-mimetic drug conjugate treatment, animals with relapsed tumors were treated again with the same regimen. After the second observation period, the mouse tissues were examined histopathologically. Unexpectedly, all relapsed tumors were eradicated, and all animals were diagnosed with pathological complete remission. After the second treatment, skin wounds healed rapidly, and no significant side effects were observed in other organs, except for occasional microscopic granulomatous tissues beneath the serosa of the liver in a few mice. Repeated treatments seemed to be well tolerated. These results indicate the promising efficacy of the repeated photo-activating antibody-mimetic drug conjugate treatment against HER2-expressing tumors.


Subject(s)
Immunoconjugates , Humans , Animals , Mice , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Antibodies
9.
Health Sci Rep ; 5(3): e572, 2022 May.
Article in English | MEDLINE | ID: mdl-35509410

ABSTRACT

Background: We compared the temporal changes of immunoglobulin M (IgM), IgG, and IgA antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleoprotein (N), spike 1 subunit (S1), and receptor-binding domain (RBD), and neutralizing antibodies (NAbs) against SARS-CoV-2 in patients with coronavirus disease 2019 (COVID-19) to understand the humoral immunity in COVID-19 patients for developing drugs and vaccines for COVID-19. Methods: A total of five confirmed COVID-19 cases in Nissan Tamagawa Hospital in early August 2020 were recruited in this study. Using a fully automated chemiluminescence immunoassay analyzer, we measured the levels of IgG, IgA, and IgM against SARS-CoV-2 N, S1, and RBD and NAbs against SARS-CoV-2 in COVID-19 patients' sera acquired multiple times in individuals from 0 to 76 days after symptom onset. Results: IgG levels against SARS-CoV-2 structural proteins increased over time in all cases but IgM and IgA levels against SARS-CoV-2 showed different increasing trends among individuals in the early stage. In particular, we observed IgA increasing before IgG and IgM in some cases. The NAb levels were more than cut-off value in 4/5 COVID-19 patients some of whose antibodies against RBD did not exceed the cut-off value in the early stage. Furthermore, NAb levels against SARS-CoV-2 increased and kept above cut-off value more than around 70 days after symptom onset in all cases. Conclusion: Our findings indicate COVID-19 patients should be examined for IgG, IgA, and IgM against SARS-CoV-2 structural proteins and NAbs against SARS-CoV-2 to analyze the diversity of patients' immune mechanisms.

10.
Protein Expr Purif ; 192: 106043, 2022 04.
Article in English | MEDLINE | ID: mdl-34973460

ABSTRACT

Antibody-drug conjugates (ADCs) are a major therapeutic tool for the treatment of advanced cancer. Malignant cells in advanced cancer often display multiple genetic mutations and become resistant to monotherapy. Therefore, a therapeutic regimen that simultaneously targets multiple molecules with multiple payloads is desirable. However, the development of ADCs is hampered by issues in biopharmaceutical manufacturing and the complexity of the conjugation process of low-molecular-weight payloads to biologicals. Here, we report antibody mimetic-drug conjugates (AMDCs) developed by exploiting the non-covalent binding property of payloads based on high-affinity binding of mutated streptavidin and modified iminobiotin. Miniprotein antibodies were fused to a low immunogenic streptavidin variant, which was then expressed in Escherichia coli inclusion bodies, solubilized, and refolded into functional tetramers. The AMDC developed against human epidermal growth factor receptor 2 (HER2) effectively killed cultured cancer cells using bis-iminobiotin conjugated to photo-activating silicon phthalocyanine. The HER2-targeting AMDC was also effective in vivo against a mouse KPL-4 xenograft model. This AMDC platform provides rapid, stable, and high-yield therapeutics against multiple targets.


Subject(s)
Escherichia coli/metabolism , Gene Expression , Immunoconjugates/genetics , Animals , Biotin/administration & dosage , Biotin/analogs & derivatives , Biotin/chemistry , Biotin/genetics , Biotin/immunology , Cell Line, Tumor , Cloning, Molecular , Escherichia coli/genetics , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Immunoconjugates/immunology , Mice , Mice, Inbred BALB C , Neoplasms/drug therapy , Protein Folding , Receptor, ErbB-2/antagonists & inhibitors , Receptor, ErbB-2/genetics , Receptor, ErbB-2/immunology , Streptavidin/administration & dosage , Streptavidin/chemistry , Streptavidin/genetics , Streptavidin/immunology
11.
Pathogens ; 10(11)2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34832576

ABSTRACT

Probiotics and prebiotics have become viable alternatives of growth-promoting antimicrobials in animal production. Here, we tested partially hydrolyzed guar gum (PHGG) as a possible prebiotic for piglets in the commercial farm. Five hundred and ninety-four piglets were used for the experiments, with 293 given a normal pig feed (control), while the rest the feed plus 0.06% (w/w) of PHGG (PHGG). One and three months post-PHGG supplementation, fecal samples were collected from randomly selected 20 piglets in each group and analyzed for microbiota and organic acid concentrations. Notably, the abundance of Streptococcus, and unclassified Ruminococcaceae were lower (p < 0.05) in PHGG than in control, one-month post-supplementation. Lactobacillus and Prevotella were higher (p < 0.05), while Streptococcus was lower (p < 0.05), in PHGG than in control, three months post-supplementation. The concentrations of acetate, propionate, and butyrate were greater in PHGG than in control, three months post-supplementation. Finally, PHGG grew faster and had fewer deaths until slaughter time (p < 0.05), than control. We concluded that PHGG not only was an effective prebiotic to alter gut microbiota of weanling piglets but also can possibly promote body weight accretion and health.

12.
Case Rep Oncol ; 14(2): 1220-1227, 2021.
Article in English | MEDLINE | ID: mdl-34703439

ABSTRACT

Pyomyositis has recently been recognized as a primary infection of the large skeletal muscles, and it is often accompanied by single or multiple intramuscular abscess formation. Immunocompromised patients, including those with diabetes mellitus, human immunodeficiency virus infection, and cancer, as well as those undergoing chemotherapy, are at a greater risk of developing pyomyositis. A 78-year-old Japanese man with recurrent gastric cancer being treated with chemotherapy presented with sudden-onset pain in his left lower extremity while undergoing a second-line regimen with irinotecan. T2-weighted magnetic resonance imaging (MRI) showed an abnormally high-intensity signal in the left internal and external obturator muscles, a finding consistent with pyomyositis. Following intensive antibiotic treatment, the patient recovered completely and was able to resume chemotherapy with irinotecan. For a patient who developed pyomyositis during chemotherapy for gastric cancer, early diagnosis using MRI followed by administration of timely intensive antibiotic therapy resulted in complete recovery.

13.
Nihon Yakurigaku Zasshi ; 156(5): 282-287, 2021.
Article in Japanese | MEDLINE | ID: mdl-34470932

ABSTRACT

Basement membrane is a dense sheet-like extracellular matrix (ECM), which separates cells from surrounding interstitium. Type IV collagen is a major component of basement membrane and three of six α chains (namely α1-α6 chains) form a triple-helix structure. Recently, endogenous bioactive factors called "matricryptins" or "matrikines", which are produced by degrading and cleaving C-terminal domain of type IV collagen, attract attentions as a novel therapeutic target or a candidate for biomarkers. In all type IV collagens, matricryptins called arresten (α1 chain), canstatin (α2), tumstatin (α3), tetrastatin (α4), pentastatin (α5), and hexastatin (α6), have been identified. The type IV collagen-derived matricryptins have been previously studied as new therapeutic targets for neoplastic diseases since they exert anti-angiogenic and/or anti-tumor effects. On the other hand, we have recently demonstrated the cardioprotective effects of matricryptins in addition to the altered expression levels in cardiac diseases. In this review, we introduce the results of fundamental studies for the type IV collagen-derived matricryptins in various diseases, such as neoplastic diseases and cardiac diseases, and discuss the potential clinical application as novel therapeutic agents and biomarkers.


Subject(s)
Collagen Type IV , Neoplasms , Basement Membrane , Extracellular Matrix , Humans , Neoplasms/drug therapy
14.
Int J Mol Sci ; 22(3)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498253

ABSTRACT

Ventricular arrhythmia induced by ischemia/reperfusion (I/R) injury is a clinical problem in reperfusion therapies for acute myocardial infarction. Ca2+ overload through reactive oxygen species (ROS) production is a major cause for I/R-induced arrhythmia. We previously demonstrated that canstatin, a C-terminal fragment of type IV collagen α2 chain, regulated Ca2+ handling in rat heart. In this study, we aimed to clarify the effects of canstatin on I/R-induced ventricular arrhythmia in rats. Male Wistar rats were subjected to I/R injury by ligating the left anterior descending artery followed by reperfusion. Ventricular arrhythmia (ventricular tachycardia and ventricular fibrillation) was recorded by electrocardiogram. Nicotinamide adenine dinucleotide phosphate oxidase (NOX) activity and ROS production in neonatal rat cardiomyocytes (NRCMs) stimulated with oxygen glucose deprivation/reperfusion (OGD/R) were measured by lucigenin assay and 2',7'-dichlorodihydrofluorescein diacetate staining, respectively. The H2O2-induced intracellular Ca2+ ([Ca2+]i) rise in NRCMs was measured by a fluorescent Ca2+ indicator. Canstatin (20 µg/kg) inhibited I/R-induced ventricular arrhythmia in rats. Canstatin (250 ng/mL) inhibited OGD/R-induced NOX activation and ROS production and suppressed the H2O2-induced [Ca2+]i rise in NRCMs. We for the first time demonstrated that canstatin exerts a preventive effect against I/R-induced ventricular arrhythmia, perhaps in part through the suppression of ROS production and the subsequent [Ca2+]i rise.


Subject(s)
Anti-Arrhythmia Agents/therapeutic use , Collagen Type IV/therapeutic use , Myocardial Reperfusion Injury/complications , Peptide Fragments/therapeutic use , Tachycardia/prevention & control , Ventricular Fibrillation/prevention & control , Animals , Anti-Arrhythmia Agents/pharmacology , Calcium/metabolism , Cells, Cultured , Collagen Type IV/pharmacology , Male , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Peptide Fragments/pharmacology , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism , Tachycardia/drug therapy , Tachycardia/etiology , Ventricular Fibrillation/drug therapy , Ventricular Fibrillation/etiology
15.
Int J Mol Sci ; 21(18)2020 Sep 16.
Article in English | MEDLINE | ID: mdl-32947968

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive disease which causes right ventricular (RV) failure. Canstatin, a C-terminal fragment of type IV collagen α2 chain, is expressed in various rat organs. However, the expression level of canstatin in plasma and organs during PAH is still unclear. We aimed to clarify it and further investigated the protective effects of canstatin in a rat model of monocrotaline-induced PAH. Cardiac functions were assessed by echocardiography. Expression levels of canstatin in plasma and organs were evaluated by enzyme-linked immunosorbent assay and Western blotting, respectively. PAH was evaluated by catheterization. RV remodeling was evaluated by histological analyses. Real-time polymerase chain reaction was performed to evaluate RV remodeling-related genes. The plasma concentration of canstatin in PAH rats was decreased, which was correlated with a reduction in acceleration time/ejection time ratio and an increase in RV weight/body weight ratio. The protein expression of canstatin in RV, lung and kidney was decreased in PAH rats. While recombinant canstatin had no effect on PAH, it significantly improved RV remodeling, including hypertrophy and fibrosis, and prevented the increase in RV remodeling-related genes. We demonstrated that plasma canstatin is decreased in PAH rats and that administration of canstatin exerts cardioprotective effects.


Subject(s)
Cardiotonic Agents/therapeutic use , Collagen Type IV/biosynthesis , Collagen Type IV/therapeutic use , Hypertension, Pulmonary/metabolism , Peptide Fragments/therapeutic use , Ventricular Remodeling/drug effects , Animals , Body Weight/drug effects , Collagen Type IV/blood , Collagen Type IV/genetics , Drug Evaluation, Preclinical , Enzyme-Linked Immunosorbent Assay , Fibrosis , Heart Ventricles/drug effects , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/genetics , Hypertrophy , Kidney/metabolism , Lung/metabolism , Lung/pathology , Male , Monocrotaline/toxicity , Organ Size/drug effects , Rats , Rats, Wistar , Recombinant Proteins/therapeutic use
16.
Molecules ; 25(17)2020 Aug 27.
Article in English | MEDLINE | ID: mdl-32867091

ABSTRACT

Chiral tertiary α-hydroxyketones were synthesized with high enantiopurity by asymmetric decarboxylative chlorination and subsequent nucleophilic substitution. We recently reported the asymmetric decarboxylative chlorination of ß-ketocarboxylic acids in the presence of a chiral primary amine catalyst to obtain α-chloroketones with high enantiopurity. Here, we found that nucleophilic substitution of the resulting α-chloroketones with tetrabutylammonium hydroxide yielded the corresponding α-hydroxyketones without loss of enantiopurity. The reaction proceeded smoothly even at a tertiary carbon. The proposed method would be useful for the preparation of chiral tertiary alcohols.


Subject(s)
Ketones/chemical synthesis , Alcohols/chemical synthesis , Catalysis , Halogenation , Molecular Structure , Organic Chemistry Phenomena
17.
Sci Rep ; 10(1): 12881, 2020 07 30.
Article in English | MEDLINE | ID: mdl-32732948

ABSTRACT

Myocardial infarction (MI) still remains a leading cause of mortality throughout the world. An adverse cardiac remodeling, such as hypertrophy and fibrosis, in non-infarcted area leads to uncompensated heart failure with cardiac dysfunction. We previously demonstrated that canstatin, a C-terminus fragment of type IV collagen α2 chain, exerted anti-remodeling effect against isoproterenol-induced cardiac hypertrophy model rats. In the present study, we examined whether a long-term administration of recombinant canstatin exhibits a cardioprotective effect against the adverse cardiac remodeling in MI model rats. Left anterior descending artery of male Wistar rats was ligated and recombinant mouse canstatin (20 µg/kg/day) was intraperitoneally injected for 28 days. Long-term administration of canstatin improved survival rate and significantly inhibited left ventricular dilatation and dysfunction after MI. Canstatin significantly inhibited scar thinning in the infarcted area and significantly suppressed cardiac hypertrophy, nuclear translocation of nuclear factor of activated T-cells, interstitial fibrosis and increase of myofibroblasts in the non-infarcted area. Canstatin significantly inhibited transforming growth factor-ß1-induced differentiation of rat cardiac fibroblasts into myofibroblasts. The present study for the first time demonstrated that long-term administration of recombinant canstatin exerts cardioprotective effects against adverse cardiac remodeling in MI model rats.


Subject(s)
Cardiomegaly , Cardiotonic Agents/pharmacology , Collagen Type IV/pharmacology , Myocardial Infarction , Myocardium , Peptide Fragments/pharmacology , Ventricular Remodeling/drug effects , Animals , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cardiomegaly/prevention & control , Male , Mice , Myocardial Infarction/drug therapy , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardium/metabolism , Myocardium/pathology , Rats , Rats, Wistar , Recombinant Proteins/pharmacology
18.
Eur J Pharmacol ; 871: 172849, 2020 Mar 15.
Article in English | MEDLINE | ID: mdl-31843516

ABSTRACT

Pathological cardiac hypertrophy associated with cardiac dysfunction is an independent risk factor for arrhythmia, myocardial infarction and sudden death. Canstatin, a C-terminal fragment of type IV collagen α2 chain, is abundantly expressed in normal heart tissue. We previously demonstrated that canstatin inhibits isoproterenol (ISO)-induced dephosphorylation of nuclear factor of activated T-cells (NFAT)c4, which plays an important role in cardiac hypertrophy, in differentiated H9c2 cardiomyoblasts. Thus, we investigated whether in vivo canstatin administration prevents ISO-induced cardiac hypertrophy through the inhibition of NFATc4 pathway. Rats were subcutaneously injected with ISO (5 mg/kg) or saline (Cont) for 7 days. Simultaneously, recombinant mouse canstatin (20 µg/kg) or vehicle was intraperitoneally administered. After left ventricular wall thickness and cardiac function were measured by echocardiography, the hearts were isolated and left ventricular weight (LVW) was weighed. Azan staining was performed to measure cross-sectional diameter of cardiomyocytes. Activity of calcineurin, which dephosphorylates NFATc4, was measured by calcineurin phosphatase activity assay. Immunohistochemical staining was performed to evaluate nuclear translocation of NFATc4. Intracellular Ca2+ concentration in neonatal rat cardiomyocytes (NRCMs) was measured by using a calcium indicator. Canstatin significantly inhibited ISO-induced increase of LVW, left ventricular posterior wall thickness at end-diastole and diameter of cardiomyocytes. Canstatin significantly inhibited ISO-induced activation of calcineurin, nuclear translocation of NFATc4, increased mRNA expression of ß-myosin heavy chain and α-skeletal actin, and intracellular Ca2+ rise in NRCMs. In summary, we for the first time demonstrated that canstatin administration suppresses ISO-induced cardiac hypertrophy possibly through the blockade of calcineurin/NFATc4 pathway in rats.


Subject(s)
Calcineurin/metabolism , Cardiomegaly/drug therapy , Cardiomegaly/metabolism , Collagen Type IV/pharmacology , Isoproterenol/adverse effects , NFATC Transcription Factors/metabolism , Peptide Fragments/pharmacology , Animals , Calcium/metabolism , Cardiomegaly/chemically induced , Cardiomegaly/pathology , Dose-Response Relationship, Drug , Heart Ventricles/drug effects , Heart Ventricles/pathology , Male , Mice , Phosphoric Monoester Hydrolases/metabolism , Protein Transport/drug effects , Rats , Rats, Wistar
19.
Proc Jpn Acad Ser B Phys Biol Sci ; 95(10): 602-611, 2019.
Article in English | MEDLINE | ID: mdl-31827018

ABSTRACT

In advanced cancer patients, malignant cells invade and disseminate within normal cells and develop resistance to therapy with additional genetic mutations, which makes radical cure very difficult. Precision medicine against advanced cancer is hampered by the lack of systems aimed at multiple target molecules within multiple loci. Here, we report the development of a versatile diagnostic and therapeutic system for advanced cancer, named the Cupid and Psyche system. Based on the strong non-covalent interaction of streptavidin and biotin, a low immunogenic mutated streptavidin, Cupid, and a modified artificial biotin, Psyche, have been designed. Cupid can be fused with various single-chain variable fragment antibodies and forms tetramer to recognize cancer cells precisely. Psyche can be conjugated to a wide range of diagnostic and therapeutic agents against malignant cells. The Cupid and Psyche system can be used in pre-targeting therapy as well as photo-immunotherapy effectively in animal models supporting the concept of a system for precision medicine for multiple targets within multiple loci.


Subject(s)
Antineoplastic Agents/chemistry , Biotin/chemistry , Neoplasms/diagnosis , Neoplasms/drug therapy , Streptavidin/chemistry , Animals , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Delivery Systems , Humans , Immunotherapy , Precision Medicine , Single-Chain Antibodies/chemistry
20.
Nat Commun ; 10(1): 3183, 2019 Jul 18.
Article in English | MEDLINE | ID: mdl-31320622

ABSTRACT

Dendrite arm fragmentation is considered in solidification structure tailoring. Time-resolved and in situ imaging using synchrotron radiation X-rays allows the observation of dendrite arm fragmentation in Fe-C alloys. Here we report a dendrite arm fragmentation mechanism. A massive-like transformation from ferrite to austenite rather than the peritectic reaction occurs during or after ferrite solidification. The transformation produces refined austenite grains and ferrite-austenite boundaries in dendrite arms. The austenite grains are fragmented by the liquid phase that is produced at the grain boundary. In unidirectional solidification, a slight increase in temperature moves the ferrite-austenite interface backwards and promotes detachment of the primary and secondary arms at the δ-γ interface via a reverse peritectic reaction. The results show a massive-like transformation inducing the dendrite arm fragmentation has a role in formation of the solidification structure and the austenite grain structures in the Fe-C alloys.

SELECTION OF CITATIONS
SEARCH DETAIL
...